, Volume 54, Issue 13, pp 2053–2065 | Cite as

Inertial amplified resonators for tunable metasurfaces

  • Farhad Zeighami
  • Antonio Palermo
  • Alessandro MarzaniEmail author
Mechanics of Extreme Materials


In this work, we propose an inertial amplified resonator (IAR) as a building block of a tunable locally resonant metasurface. The IAR consists in a mass–spring resonator coupled with two inerters, realized by two inclined rigid links connected to an additional mass. The IAR has a static behaviour equivalent to that of a standard mass–spring oscillator whereas its dynamic response can be controlled by means of the geometrical configuration and mass of the inerters. We derive the dynamic amplification factor and the base force of the IAR for an imposed harmonic motion and perform a parametric study to unveil its peculiar dynamics. Next, we use an effective medium approach to derive the closed-form dispersion law of a metasurface consisting of IARs coupled to a semi-infinite elastic substrate. We show that the IAR enriches the dynamics of the metasurface providing the ability (1) to shift its bandgap frequency spectrum without changing the mass and stiffness of the resonators, (2) to design single frequency or multi-frequency (metawedges) metasurfaces, (3) to obtain a high-frequency behavior typical of an added dead mass layer (i.e., non-resonant), which confers to the metasurface additional filtering properties.


Elastic metamaterials Metasurfaces Inertial amplification resonator Surface waves Added mass Metawedge 



A.P. acknowledges the support of the University of Bologna - DICAM through the research fellowship “Metamaterials for seismic waves attenuation”.

Compliances with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chen HT, Taylor AJ, Yu N (2016) A review of metasurfaces: physics and applications. Rep Prog Phys 79(7):076401. ADSCrossRefGoogle Scholar
  2. 2.
    Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater. CrossRefGoogle Scholar
  3. 3.
    Cheng JC, Jing Y, Liang B, Li Y, Wu Y, Assouar B (2018) Acoustic metasurfaces. Nat Rev Mater 3(12):460. ADSCrossRefGoogle Scholar
  4. 4.
    Garova EA, Maradudin EA, Mayer AP (1999) Interaction of Rayleigh waves with randomly distributed oscillators on the surface. Phys Rev B Condens Matter Mater Phys 59(20):13291. ADSCrossRefGoogle Scholar
  5. 5.
    Colquitt D, Colombi A, Craster R, Roux P, Guenneau S (2017) Seismic metasurfaces: sub-wavelength resonators and Rayleigh wave interaction. J Mech Phys Solids 99:379ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Jin Y, Torrent D, Pennec Y, Djafari-Rouhani B (2016) Gradient index devices for the full control of elastic waves in plates. Sci Rep 6:24437ADSCrossRefGoogle Scholar
  7. 7.
    Su X, Lu Z, Norris AN (2018) Elastic metasurfaces for splitting SV- and P-waves in elastic solids. J Appl Phys 123(9):091701. CrossRefGoogle Scholar
  8. 8.
    Shen X, Sun CT, Barnhart MV, Huang G (2018) Elastic wave manipulation by using a phase-controlling meta-layer. J Appl Phys 123(9):091708. ADSCrossRefGoogle Scholar
  9. 9.
    Al Lethawe M, Addouche M, Benchabane S, Laude V, Khelif A (2016) Guidance of surface elastic waves along a linear chain of pillars. AIP Adv 6(12):121708. ADSCrossRefGoogle Scholar
  10. 10.
    Maznev AA, Gusev VE (2015) Waveguiding by a locally resonant metasurface. Phys Rev B 92:115422ADSCrossRefGoogle Scholar
  11. 11.
    Addouche M, Al-Lethawe MA, Elayouch A, Khelif A (2014) Subwavelength waveguiding of surface phonons in pillars-based phononic crystal. AIP Adv 4(12):124303. ADSCrossRefGoogle Scholar
  12. 12.
    Colombi A, Roux P, Guenneau S, Gueguen P, Craster RV (2016) Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Sci Rep 6:19238ADSCrossRefGoogle Scholar
  13. 13.
    Palermo A, Krödel S, Marzani A, Daraio C (2016) Engineered metabarrier as shield from seismic surface waves. Sci Rep 6:39356ADSCrossRefGoogle Scholar
  14. 14.
    Palermo A, Krödel S, Matlack KH, Zaccherini R, Dertimanis VK, Chatzi EN, Marzani A, Daraio C (2018) Hybridization of guided surface acoustic modes in unconsolidated granular media by a resonant metasurface. Phys Rev Appl 9:054026. ADSCrossRefGoogle Scholar
  15. 15.
    Boutin C, Schwan L, Dietz MS (2015) Elastodynamic metasurface: depolarization of mechanical waves and time effects. J Appl Phys 117:6. CrossRefGoogle Scholar
  16. 16.
    Colombi A, Guenneau S, Roux P, Craster RV (2016) Transformation seismology: composite soil lenses for steering surface elastic Rayleigh waves. Sci Rep 6:25320ADSCrossRefGoogle Scholar
  17. 17.
    Palermo A, Marzani A (2018) Control of love waves by resonant metasurfaces. Sci Rep 8:7234ADSCrossRefGoogle Scholar
  18. 18.
    Otsuka PH, Mezil S, Matsuda O, Tomoda M, Maznev AA, Gan T, Fang N, Boechler N, Gusev VE, Wright OB (2018) Time-domain imaging of gigahertz surface waves on an acoustic metamaterial. N J Phys 20(1):013026. CrossRefGoogle Scholar
  19. 19.
    Boechler N, Eliason JK, Kumar A, Maznev AA, Nelson KA, Fang N (2013) Interaction of a contact resonance of microspheres with surface acoustic waves. Phys Rev Lett 111:036103ADSCrossRefGoogle Scholar
  20. 20.
    Bonanomi L, Theocharis G, Daraio C (2015) Wave propagation in granular chains with local resonances. Phys Rev E Stat Nonlinear Soft Matter Phys 91(3):033208. ADSCrossRefGoogle Scholar
  21. 21.
    Fang X, Wen J, Bonello B, Yin J, Yu D (2017) Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nat Commun 8(1):1288. ADSCrossRefGoogle Scholar
  22. 22.
    Jiao W, Gonella S (2018) Mechanics of inter-modal tunneling in nonlinear waveguides. J Mech Phys Solids 111:1–17. ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Airoldi L, Ruzzene M (2011) Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. N J Phys 13(11):113010. CrossRefGoogle Scholar
  24. 24.
    Casadei F, Delpero T, Bergamini A, Ermanni P, Ruzzene M (2012) Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials. J Appl Phys 112(6):064902. ADSCrossRefGoogle Scholar
  25. 25.
    Chen YY, Hu GK, Huang GL (2016) An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural waves. Smart Mater Struct 25(10):105036. ADSCrossRefGoogle Scholar
  26. 26.
    Cardella D, Celli P, Gonella S (2016) Manipulating waves by distilling frequencies: a tunable shunt-enabled rainbow trap. Smart Mater Struct 25(8):085017. ADSCrossRefGoogle Scholar
  27. 27.
    Zhu R, Liu XN, Hu GK, Sun CT, Huang GL (2014) A chiral elastic metamaterial beam for broadband vibration suppression. J Sound Vib 333(10):2759–2773. ADSCrossRefGoogle Scholar
  28. 28.
    Bacigalupo A, Lepidi M, Gnecco G, Gambarotta L (2016) Optimal design of auxetic hexachiral metamaterials with local resonators. Smart Mater Struct 25(5):054009ADSCrossRefGoogle Scholar
  29. 29.
    Matlack KH, Bauhofer A, Krödel S, Palermo A, Daraio C (2015) Composite 3D-printed meta-structures for low frequency and broadband vibration absorption. In: Proceedings of the national academy of sciences of the United States of America, vol 113, no. 30, ADSCrossRefGoogle Scholar
  30. 30.
    Yilmaz C, Hulbert GM, Kikuchi N (2007) Phononic band gaps induced by inertial amplification in periodic media. Phys Rev B 76(5):054309ADSCrossRefGoogle Scholar
  31. 31.
    Yilmaz C, Hulbert G (2010) Theory of phononic gaps induced by inertial amplification in finite structures. Phys Lett A 374(34):3576ADSCrossRefGoogle Scholar
  32. 32.
    Taniker S, Yilmaz C (2013) Phononic gaps induced by inertial amplification in BCC and FCC lattices. Phys Lett Sect A Gen Atom Solid State Phys 377(31–33):1930–1936. CrossRefGoogle Scholar
  33. 33.
    Frandsen NM, Bilal OR, Jensen JS, Hussein MI (2016) Inertial amplification of continuous structures: Large band gaps from small masses. J Appl Phys 119(12):124902. ADSCrossRefGoogle Scholar
  34. 34.
    Shen Y, Chen L, Yang X, Shi D, Yang J (2016) Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. J Sound Vib 361:148–158. ADSCrossRefGoogle Scholar
  35. 35.
    Brzeski P, Kapitaniak T, Perlikowski P (2015) Novel type of tuned mass damper with inerter which enables changes of inertance. J Sound Vib 349:56–66. ADSCrossRefGoogle Scholar
  36. 36.
    Graff KF (1991) Wave motion in elastic solids. Dover books on physics Dover, New York, NYzbMATHGoogle Scholar
  37. 37.
    Palermo A, Vitali M, Marzani A (2018) Metabarriers with multi-mass locally resonating units for broad band Rayleigh waves attenuation. Soil Dyn Earthq Eng 113:265CrossRefGoogle Scholar
  38. 38.
    Colombi A, Colquitt DJ, Roux PP, Guenneau S, Craster RV (2016) A seismic metamaterial: the resonant metawedge. Sci Rep 6:27717ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Civil, Chemical, Environmental and Materials Engineering - DICAMUniversity of BolognaBolognaItaly

Personalised recommendations