Advertisement

Meccanica

pp 1–12 | Cite as

A simply tunable electromagnetic pendulum energy harvester

  • Davide CastagnettiEmail author
Article
  • 60 Downloads

Abstract

A fundamental issue for the advance of self-sustainable electronic systems and remote sensor is the development of energy harvesters able to efficiently convert ambient energy into electrical energy. This paper presents an innovative simply tunable pendulum electromagnetic energy harvester, starting from conceptual design, analysis of the mechanical system and electromagnetic converter, development, and experimental assessment. The proposed system has the peculiar feature of a magnetic spring to enhance the equilibrium whichever the orientation and enabling frequency tuning. A magnetic C-frame gives a constant magnetic field through a gap, which is crossed by the coils fixed to a free end of the pendulum. The prototype, about one cubic decimeter, provides a low frequency and simply tunable modal response, together with a significant output power.

Keywords

Energy harvester Pendulum Electromagnetic converter Tunable system Experimental assessment 

Notes

References

  1. 1.
    Lynch JP, Loh KJ (2006) A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib Dig 38:91–130CrossRefGoogle Scholar
  2. 2.
    Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52:2292–2330CrossRefGoogle Scholar
  3. 3.
    Zhang S, Zhang H (2012) A review of wireless sensor networks and its applications. In: 2012 IEEE international conference automation logistics, pp 386–389Google Scholar
  4. 4.
    Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:1457–1486CrossRefGoogle Scholar
  5. 5.
    Despesse G, Jager T, Chaillout J, Léger J (2005) Design and fabrication of a new system for vibration energy harvesting. In: Research in microelectronics and electronics, 2005 Ph.D. (IEEE), pp 10–3Google Scholar
  6. 6.
    Gammaitoni L, Vocca H, Neri I, Travasso F, Orfei F (2011) Vibration energy harvesting: linear and nonlinear oscillator approaches. In: Tan YK (ed) Sustainable energy harvesting technologies: past, present and future. InTech, RijekaGoogle Scholar
  7. 7.
    Neri I, Travasso F, Mincigrucci R, Vocca H, Orfei F, Gammaitoni L (2012) A real vibration database for kinetic energy harvesting application. J Intell Mater Syst Struct 23:2095–2101CrossRefGoogle Scholar
  8. 8.
    Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195CrossRefGoogle Scholar
  9. 9.
    Dewei J, Jing L (2009) Human power-based energy harvesting strategies for mobile electronic devices. Front Energy Power Eng China 3:27–46CrossRefGoogle Scholar
  10. 10.
    Khaligh A, Zeng P, Zheng C (2010) Kinetic energy harvesting using piezoelectric and electromagnetic technologies: state of the art. IEEE Trans Ind Electron 57:850–860CrossRefGoogle Scholar
  11. 11.
    Nico V, Boco E, Frizzell R, Punch J (2016) A high figure of merit vibrational energy harvester for low frequency applications. Appl Phys, Lett, p 108Google Scholar
  12. 12.
    Benasciutti D, Moro L, Zelenika S, Brusa E (2010) Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst Technol 16:657–668CrossRefGoogle Scholar
  13. 13.
    Glynne-Jones P, Beeby SP, White NM (2001) Towards a piezoelectric vibration-powered microgenerator. IEE Proc Sci Meas Technol 148:68–72CrossRefGoogle Scholar
  14. 14.
    Zurn S, Hsieh M, Smith G, Markus D, Zang M, Hughes G, Nam Y, Arik M, Polla D (2001) Fabrication and structural characterization of a resonant frequency PZT microcantilever. Smart Mater Struct 10:252–263ADSCrossRefGoogle Scholar
  15. 15.
    Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRefGoogle Scholar
  16. 16.
    Shen D, Choe S-Y, Kim D-J (2007) Analysis of piezoelectric materials for energy harvesting devices under high-g vibrations. Jpn J Appl Phys 46:6755–6760ADSCrossRefGoogle Scholar
  17. 17.
    Benasciutti D, Moro L, Gallina M (2012) On the optimal bending deflection of piezoelectric scavengers. J Intell Mater Syst Struct.  https://doi.org/10.1177/1045389X12469451 Google Scholar
  18. 18.
    Castagnetti D (2011) Fractal-inspired multifrequency structures for piezoelectric harvesting of ambient kinetic energy. J Mech Des 133:111005CrossRefGoogle Scholar
  19. 19.
    Castagnetti D (2012) Experimental modal analysis of fractal-inspired multi-frequency structures for piezoelectric energy converters. Smart Mater Struct 21:094009ADSCrossRefGoogle Scholar
  20. 20.
    Castagnetti D (2013) A wideband fractal-inspired piezoelectric energy converter: design, simulation and experimental characterization. Smart Mater Struct 22:094024ADSCrossRefGoogle Scholar
  21. 21.
    Castagnetti D (2015) Comparison between a wideband fractal-inspired and a traditional multicantilever piezoelectric energy converter. J Vib Acoust 137:011006CrossRefGoogle Scholar
  22. 22.
    Castagnetti D (2015) A Belleville-spring-based electromagnetic energy harvester. Smart Mater Struct 24:94009CrossRefGoogle Scholar
  23. 23.
    Daqaq MF (2010) Response of uni-modal duffing-type harvesters to random forced excitations. J Sound Vib 329:3621–3631ADSCrossRefGoogle Scholar
  24. 24.
    Bryant M, Garcia E (2011) Modeling and testing of a novel aeroelastic flutter energy harvester. J Vib Acoust 133:11010CrossRefGoogle Scholar
  25. 25.
    Singh K, Michelin S, De Langre E (2012) Energy harvesting from axial fluid-elastic instabilities of a cylinder. J Fluids Struct 30:159–172CrossRefGoogle Scholar
  26. 26.
    Burrow SG, Clare LR, Carrella A, Barton D (2008) Vibration energy harvesters with non-linear compliance. In: The 15th international symposium on: smart structures and materials & nondestructive evaluation and health monitoring (international society for optics and photonics), p 692807Google Scholar
  27. 27.
    Mann BP, Sims ND (2009) Energy harvesting from the nonlinear oscillations of magnetic levitation. J Sound Vib 319:515–530ADSCrossRefGoogle Scholar
  28. 28.
    Ramlan R, Brennan MJ, Mace BR, Kovacic I (2010) Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn 59:545–558CrossRefzbMATHGoogle Scholar
  29. 29.
    Pillatsch P, Yeatman EM, Holmes AS (2014) A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sensors Actuators A Phys 206:178–185CrossRefGoogle Scholar
  30. 30.
    Ma T-W, Zhang H, Xu N-S (2012) A novel parametrically excited non-linear energy harvester. Mech Syst Signal Process 4:28Google Scholar
  31. 31.
    Kadjie AN, Woafo P (2014) Effects of springs on a pendulum electromechanical energy harvester. Theor Appl Mech Lett 4:063001CrossRefGoogle Scholar
  32. 32.
    Bibo A, Gang Li G, Daqaq MF (2011) Electromechanical modeling and normal form analysis of an aeroelastic micro-power generator. J Intell Mater Syst Struct 22:577–592CrossRefGoogle Scholar
  33. 33.
    Liang C, Wu Y, Zuo L (2016) Broadband pendulum energy harvester. Smart Mater Struct 25:095042–1–095042–9Google Scholar
  34. 34.
    Castagnetti D, Radi E (2018) A piezoelectric based energy harvester with dynamic magnification: modelling, design and experimental assessment. Meccanica 53:2725–2742CrossRefGoogle Scholar
  35. 35.
    Castagnetti D, Dallari F (2017) Design and experimental assessment of an electromagnetic energy harvester based on slotted disc springs. Proc Inst Mech Eng. Part L J Mater Des, Appl, p 231Google Scholar
  36. 36.
    Spaggiari A, Castagnetti D, Golinelli N, Dragoni E, Scire Mammano G (2016) Smart materials: properties, design and mechatronic applications. Proc Inst Mech Eng Part L J Mater Des Appl 233(4):734–762Google Scholar
  37. 37.
    Wang Y-J, Chen C-D, Sung C-K (2010) Design of a frequency-adjusting device for harvesting energy from a rotating wheel. Sensors Actuators A Phys 159:196–203CrossRefGoogle Scholar
  38. 38.
    Wiercigroch M, Najdecka A, Vaziri Hamaneh SV (2011) Nonlinear dynamics of pendulums system for energy harvesting. In: Naprstek J, Horacek J, Okrouhlik M, Marvalova B, Verhulst F, Sawicki J (ed) Proceedings in physics vibration problems ICOVP 2011. Springer, pp 35–42Google Scholar
  39. 39.
    Jia Y, Yan J, Soga K, Seshia AA (2014) Parametric resonance for vibration energy harvesting with design techniques to passively reduce the initiation threshold amplitude. Smart Mater Struct 23:065011ADSCrossRefGoogle Scholar
  40. 40.
    Spreemann D, Manoli Y, Folkmer B, Mintenbeck D (2006) Non-resonant vibration conversion. J Micromech Microeng 16:S169–S173CrossRefGoogle Scholar
  41. 41.
    Kim JE, Kim YY (2013) Power enhancing by reversing mode sequence in tuned mass-spring unit attached vibration energy harvester. AIP Adv 3:072103ADSCrossRefGoogle Scholar
  42. 42.
    Malaji PV, Ali SF (2015) Analysis of energy harvesting from multiple pendulums with and without mechanical coupling. Eur Phys J Spec Top 224:2823–2838CrossRefGoogle Scholar
  43. 43.
    Ylli K, Hoffmann D, Willmann A, Folkmer B, Manoli Y (2015) Investigation of pendulum structures for rotational energy harvesting from human motion. J Phys Conf Ser 660:012053CrossRefGoogle Scholar
  44. 44.
    Dai X (2016) An vibration energy harvester with broadband and frequency-doubling characteristics based on rotary pendulums. Sensors Actuators A Phys 241:161–168CrossRefGoogle Scholar
  45. 45.
    Marszal M, Witkowski B, Jankowski K, Perlikowski P, Kapitaniak T (2017) Energy harvesting from pendulum oscillations. Int J Nonlinear Mech 94:251–256CrossRefGoogle Scholar
  46. 46.
    Černý M, Dzurilla M, Musil M, Gašparík M, Černý M, Dzurilla M, Musil M, Gašparík M (2018) Pendulum energy harvester with amplifier. J Mechatron Electr Power Veh Technol 9:25CrossRefGoogle Scholar
  47. 47.
    Malaji PV, Rajarathinam M, Jaiswal V, Ali SF, Howard IM (2019) Energy harvesting from dynamic vibration pendulum absorber. In: Rao ARM, Ramanjaneyulu K (eds) Recent advances in structural engineering, vol 2. Springer, Singapore, pp 467–478CrossRefGoogle Scholar
  48. 48.
    Challa VR, Prasad MG, Shi Y, Fisher FT (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17:015035ADSCrossRefGoogle Scholar
  49. 49.
    Lin J-T, Lee B, Alphenaar B (2010) The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency. Smart Mater Struct 19:045012ADSCrossRefGoogle Scholar
  50. 50.
    Zhu Y, Li Q, Xu D, Zhang M (2012) Modeling of axial magnetic force and stiffness of ring-shaped permanent-magnet passive vibration isolator and its vibration isolating experiment. IEEE Trans Magn 48:2228–2238ADSCrossRefGoogle Scholar
  51. 51.
    Zhou W, Penamalli GR, Zuo L (2012) An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Mater Struct 21:015014ADSCrossRefGoogle Scholar
  52. 52.
    Zhu D, Beeby SP (2013) A broadband electromagnetic energy harvester with a coupled bistable structure. J Phys Conf, Ser, p 476Google Scholar
  53. 53.
    Xia Y, Liu W, Chen T, Li M, Wang H, Cui Y, Untoro T, Viridi S, Ekawati E (2017) Modelling of mechanical coupling for piezoelectric energy harvester adapted to low-frequency vibration simulation of piezoelectric energy harvester based on the vortex flow modelling of mechanical coupling for piezoelectric energy harvester adapted to low. J Phys Conf, Ser, p 877Google Scholar
  54. 54.
    Gassner A-L, Abonnenc M, Chen H-X, Morandini J, Josserand J, Rossier JS, Busnel J-M, Girault HH (2009) Magnetic forces produced by rectangular permanent magnets in static microsystems. Lab Chip 9:2356–2363CrossRefGoogle Scholar
  55. 55.
    Zhu ZQ, Member S, Howe D, Chan CC (2002) Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines. IEEE Trans Magn 38:229–238ADSCrossRefGoogle Scholar
  56. 56.
    Meeker D (2006) FEMM 4. 2 Magnetostatic tutorial, pp 1–10. http://www.femm.info/Archives/doc/tutorial-magnetic.pdf. Accessed 12 Apr 2019
  57. 57.
    Zijlstra H (1967) Experimental methods in magnetism, part I: measurement of magnetic quantities. ed E P Wohlfarth (North-Holland)Google Scholar
  58. 58.
  59. 59.
    http://www.dataphysics.com/ 2018 Electrodynamic shaker
  60. 60.
    www.mmf.de 2018 Miniature accelerometers
  61. 61.
    www.ni.com/labview/ 2018 Labview software
  62. 62.
    http://www.ni.com/labview/signalexpress/ 2018 Labview signal express software

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Sciences and Methods for EngineeringUniversity of Modena and Reggio EmiliaReggio EmiliaItaly

Personalised recommendations