, Volume 54, Issue 13, pp 1983–1999 | Cite as

Cosserat elastic lattices

  • Z. Rueger
  • C. S. Ha
  • R. S. LakesEmail author
Mechanics of Extreme Materials


Lattices composed of cubic and triangular prismatic unit cells with polymeric Sarrus linkage rib elements are designed, fabricated via 3D printing and studied experimentally. Size effects in these lattices are observed experimentally; slender specimens appear more rigid in torsion and in bending than expected via classical elasticity. Effects are analyzed via Cosserat elasticity. The magnitude of size effects is sensitive to geometry of the lattices; triangular cells with short ribs revealed the most extreme effects, also the largest characteristic length in relation to cell size. The torsion coupling number is 1, its upper bound, for all lattices. A path to the attainment of arbitrarily large nonclassical effects is delineated.


Lattices Metamaterials Cosserat Extreme materials 



Funding was provided by National Science Foundation (CMMI-1361832).


  1. 1.
    Timoshenko SP (1983) History of strength of materials. Dover, New YorkGoogle Scholar
  2. 2.
    Schijve J (1966) Note on couple stresses. J Mech Phys Solids 14:113–120ADSCrossRefGoogle Scholar
  3. 3.
    Cosserat E, Cosserat F (1909) Theorie des Corps Deformables. Hermann et Fils, PariszbMATHGoogle Scholar
  4. 4.
    Eringen AC (1968) Theory of micropolar elasticity. In: Liebowitz H (ed) Fracture pp 621–729, vol 1. Academic Press, New YorkGoogle Scholar
  5. 5.
    Gibson LJ, Ashby MF, Schajer GS, Robertson CI (1982) The mechanics of two dimensional cellular solids. Proc R Soc Lond A382:25–42ADSCrossRefGoogle Scholar
  6. 6.
    Mindlin RD (1963) Effect of couple stresses on stress concentrations. Exp Mech 3:1–7CrossRefGoogle Scholar
  7. 7.
    Gauthier RD, Jahsman WE (1975) A quest for micropolar elastic constants. J Appl Mech 42:369–374CrossRefGoogle Scholar
  8. 8.
    Anderson WB, Lakes RS (1994) Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J Mater Sci 29:6413–6419ADSCrossRefGoogle Scholar
  9. 9.
    Lakes RS (1986) Experimental microelasticity of two porous solids. Int J Solids Struct 22:55–63CrossRefGoogle Scholar
  10. 10.
    Anderson WB, Lakes RS (1994) Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J Mater Sci 29:6413–6419ADSCrossRefGoogle Scholar
  11. 11.
    Rueger Z, Lakes RS (2016) Experimental Cosserat elasticity in open-cell polymer foam. Philos Mag 96(2):93–111ADSCrossRefGoogle Scholar
  12. 12.
    Rueger Z, Lakes RS (2016) Cosserat elasticity of negative Poisson’s ratio foam: experiment. Smart Mater. Struct. 25(5):054004ADSCrossRefGoogle Scholar
  13. 13.
    Rueger Z, Lakes RS (2017) Observation of cosserat elastic effects in a tetragonal negative Poisson’s ratio lattice. Physica Stat Solidi (b) 254(12):1600840ADSCrossRefGoogle Scholar
  14. 14.
    Minagawa S, Arakawa K, Yamada M (1980) Diamond crystals as Cosserat continua with constrained rotation. Physica Stat Solidi A 57:713–718ADSCrossRefGoogle Scholar
  15. 15.
    Mora R, Waas AM (2000) Measurement of the Cosserat constant of circular cell polycarbonate honeycomb. Philos Mag A 80:1699–1713ADSCrossRefGoogle Scholar
  16. 16.
    Askar A, Cakmak AS (1968) A structural model of a micropolar continuum. Int J Eng Sci 6:583–589CrossRefGoogle Scholar
  17. 17.
    Tauchert T (1970) A lattice theory for representation of thermoelastic composite materials. Recent Adv Eng Sci 5:325–345Google Scholar
  18. 18.
    Adomeit G (1967) Determination of elastic constants of a structured material. In: Continua, EK (ed) Mechanics of generalized, UTAM symposium, Freudenstadt, Stuttgart. Springer, BerlinGoogle Scholar
  19. 19.
    Park T, Hwang WS, Hu JW (2009) Plastic continuum models for truss lattice materials with cubic symmetry. J Mech Sci Technol 24(3):657–669CrossRefGoogle Scholar
  20. 20.
    Stolken JS, Evans AG (1998) Microbend test method for measuring the plasticity length scale. J Acta Mater 46:5109–5115CrossRefGoogle Scholar
  21. 21.
    Fearing R (2018) Sarrus linkage, rapid prototyping of millirobots using composite fiber toolkits.
  22. 22.
    Rueger Z, Lakes RS (2018) Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys Rev Lett 120:065501ADSCrossRefGoogle Scholar
  23. 23.
    Rueger Z, Lakes RS (2017) Strong Cosserat elastic effects in a unidirectional composite. Z Angew Math Phys 68:54. CrossRefzbMATHGoogle Scholar
  24. 24.
    Lekhnitskii SG (1981) Theory of elasticity of an anisotropic body. Mir, MoscowzbMATHGoogle Scholar
  25. 25.
    Lakes RS, Drugan WJ (2015) Bending of a Cosserat elastic bar of square cross section—theory and experiment. J Appli Mech 82(9):091002CrossRefGoogle Scholar
  26. 26.
    Drugan WJ, Lakes RS (2018) Torsion of a Cosserat elastic bar of square cross section: theory and experiment. Z Angew Math Phys 69(24):24. MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Park HC, Lakes RS (1987) Torsion of a micropolar elastic prism of square cross section. Int J Solids Struct 23:485–503CrossRefGoogle Scholar
  28. 28.
    Zener C (1947) Contributions to the theory of beta-phase alloys. Phys Rev 71:846–851ADSCrossRefGoogle Scholar
  29. 29.
    Bigoni D, Drugan WJ (2007) Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J Appl Mech 74:741–753MathSciNetCrossRefGoogle Scholar
  30. 30.
    Rueger Z, Lakes RS (2018) Experimental study of elastic constants of a dense foam with weak Cosserat coupling. J Elast. CrossRefGoogle Scholar
  31. 31.
    Buechner PM, Lakes RS (2003) Size effects in the elasticity and viscoelasticity of bone. Biomech Model Mechanobiol 1(4):295–301CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Wisconsin MadisonMadisonUSA

Personalised recommendations