, Volume 53, Issue 13, pp 3339–3353 | Cite as

Dynamics of solid propellant motor composite casing under impact pressure

  • K. V. AvramovEmail author
  • M. V. Chernobryvko
  • A. M. Tonkonozhenko


A dynamic behavior of solid propellant motor composite casing under the action of an internal impact pressure is treated. This pressure describes the engine operation. The thin-walled casing consists of the cylindrical shell and two bottoms. These bottoms are truncated hemisphere. The casing is clamped along two edges of the bottoms. A shear, a rotary inertia and stress–strain relations for an orthotropic material are accounted. Semi analytical method is suggested to analyze the structure stress–strain state. The thin-walled casing dynamic is described by large dimension system of the ordinary differential equations.


Stress–strain state Solid propellant motor Internal impact pressure Equations of thin-walled structure 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Poe CC (1992) Impact damage and residual tension strength of a thick graphite/epoxy rocket motor case. J Spacecr Rockets 29:394–404ADSCrossRefGoogle Scholar
  2. 2.
    Renganathan K, Rao BN, Jana MK (1999) Failure pressure estimations on a solid propellant rocket motor with a circular perforated grain. Int J Press Vessels Pip 76:955–963CrossRefGoogle Scholar
  3. 3.
    Montesano J, Behdinan K, Greatrix DR, Fawaz Z (2008) Internal chamber modeling of a solid rocket motor: Effects of coupled structural and acoustic oscillations on combustion. J Sound Vib 311:20–38ADSCrossRefGoogle Scholar
  4. 4.
    Yldirim HC, Ozupek S (2011) Structural assessment of a solid propellant rocket motor: Effects of aging and damage. Aerosp Sci Technol 15:635–641CrossRefGoogle Scholar
  5. 5.
    Chen JT, Leu SY (1998) Finite element analysis, design and experiment on solid propellant motors with a stress reliever. Finite Elem Anal Des 29:75–86CrossRefzbMATHGoogle Scholar
  6. 6.
    Heller RA, Kamat MP, Singh MP (1979) Probability of solid-propellant motor failure due to environmental temperatures. J Spacecr Rockets 16:140–146ADSCrossRefGoogle Scholar
  7. 7.
    Heller RA, Singh MP (1983) Thermal storage life of solid-propellant motors. J Spacecr Rockets 20:144–149ADSCrossRefGoogle Scholar
  8. 8.
    Chyuan SW (2003) Dynamic analysis of solid propellant grains subjected to ignition pressurization loading. J Sound Vib 268:465–483ADSCrossRefGoogle Scholar
  9. 9.
    Marimuthu R, Rao BN (2013) Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains. Int J Press Vessels Pip 111:131–145CrossRefGoogle Scholar
  10. 10.
    Qu K, Zhan X (2013) Finite element analysis of propellant of solid rocket motor during ship motion. Propuls Power Res 2:50–55CrossRefGoogle Scholar
  11. 11.
    Yang L, Wang N, Xie K, Su X, Li S (2016) Influence of strain rate on the compressive yield stress of CMDB propellant at low, intermediate and high strain rates. Polym Test 51:49–57CrossRefGoogle Scholar
  12. 12.
    Kalaycioglu B, Dirikolu MH, Celik V (2010) An elasto-viscoplastic analysis of direct extrusion of a double base solid propellant. Adv Eng Softw 41(9):1110–1114CrossRefzbMATHGoogle Scholar
  13. 13.
    Su W, Wang N, Li J, Zhao Y, Yan M (2014) Improved method of measuring pressure coupled response for composite solid propellants. J Sound Vib 333:2226–2240ADSCrossRefGoogle Scholar
  14. 14.
    Li Q, Liu P, He G (2015) Fluid–solid coupled simulation of the ignition transient of solid rocket motor. Acta Astronaut 110:180–190ADSCrossRefGoogle Scholar
  15. 15.
    Dobyns AL (1981) Analysis of simply-supported orthotropic plates subject to static and dynamic loads. AIAA J 19:642–650ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Baharlou B, Leissa AW (1987) Vibration and buckling of generally laminated composite plates with arbitrary edge conditions. Int J Mech Sci 29:545–555CrossRefzbMATHGoogle Scholar
  17. 17.
    Bert CW, Kumar M (1982) Vibration of cylindrical shells of bimodulus composite materials. J Sound Vib 81:107–121ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Reddy JN, Liu CF (1985) A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci 23:319–330CrossRefzbMATHGoogle Scholar
  19. 19.
    Soedel W (1983) Simplified equations and solutions for the variation of orthotropic cylindrical shells. J Sound Vib 97:226–242zbMATHGoogle Scholar
  20. 20.
    Bhaskar K, Varadan TK (1991) A higher-order theory for bending analysis of laminated shells of revolution. Compos Struct 40:815–819CrossRefzbMATHGoogle Scholar
  21. 21.
    Reddy JN, Khdeir AA (1989) Buckling and vibration of laminated composite plates using various plate theories. AIAA J 27:1808–1817ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dey A, Bandyopadhyay JN, Sinha PK (1992) Finite element analysis of laminated composite paraboloid of revolution shells. Compos Struct 44:675–682ADSCrossRefGoogle Scholar
  23. 23.
    Cho M, Parmerter RR (1993) Efficient higher order composite plate theory for general lamination configurations. AIAA J 31:1299–1306ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Hufenbach W, Holste C, Kroll L (2002) Vibration and damping behaviour of multi-layered composite cylindrical shells. Compos Struct 58:165–174CrossRefGoogle Scholar
  25. 25.
    Xi ZC, Yam LH, Leung TP (1999) Free vibration of a laminated composite shell of revolution: Effects of shear non-linearity. Int J Mech Sci 41:649–661CrossRefzbMATHGoogle Scholar
  26. 26.
    Qu Y, Long X, Wu S, Meng G (2013) A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia. Compos Struct 98:169–191CrossRefGoogle Scholar
  27. 27.
    Bert CW, Egle DM (1969) Dynamics of composite, sandwich and stiffened shell- type structures. J Spacecr Rockets 6:1345–1361ADSCrossRefGoogle Scholar
  28. 28.
    Toorani MH, Lakis AA (2000) General equations of anisotropic plates and shells including transverse shear deformations, rotary inertia and initial curvature effects. J Sound Vib 237:561–615ADSCrossRefGoogle Scholar
  29. 29.
    Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Printice Hall, Englewood CliffszbMATHGoogle Scholar
  30. 30.
    Chernobryvko M, Avramov K, Kruszka L, Tonkonogenko A (2016) Dynamics of Thin-Walled Elements of Rocket Engine under Impact Loads. Key Eng Mater 715:237–242CrossRefGoogle Scholar
  31. 31.
    Avramov K, Strel’nikova E, Chernobryvko M, Gnit’ko V (2015) Methods and software of dynamic stress–strain state of the shell under the action of high rate impact loads. A.N. Podgorny Institute for Mechanical Engineering Problems, Kharkov, Ukraine, Contract No. 1058-14 with Yangel Yuzhnoye State Design Office (in Russian) Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • K. V. Avramov
    • 1
    Email author
  • M. V. Chernobryvko
    • 1
  • A. M. Tonkonozhenko
    • 2
  1. 1.Department of Vibrations, Podgorny Institute for Mechanical EngineeringNational Academy of Science of UkraineKharkivUkraine
  2. 2.Yangel Yuzhnoye State Design OfficeDniproUkraine

Personalised recommendations