, Volume 53, Issue 11–12, pp 2773–2791 | Cite as

A dielectrophoretic study of the carbon nanotube chaining process and its dependence on the local electric fields

  • A. I. Oliva-AvilésEmail author
  • A. Alonzo-García
  • V. V. Zozulya
  • F. Gamboa
  • J. Cob
  • F. Avilés


The chaining process of a system of interacting carbon nanotubes (CNTs) under an alternating current electric field is investigated at two regions of different electric field characteristics. For the region of uniform electric field (far from the electrodes), a two-dimensional multiparticle approach based on the dielectrophoretic (DEP) theory and classical mechanics is proposed to investigate the CNT rotational and translation motion. For this scenario, CNT rotation and alignment along the electric field direction occurs first, followed by the translation and chaining processes which were found to be highly dependent on the CNT-to-CNT initial configuration. On the other hand, the presence of high electric field gradients governs the CNT chaining at regions near the electrodes. DEP forces caused by such gradients were computed by finite element analysis and compared to the magnitude of the CNT-to-CNT interacting forces at zones of uniform electric fields. A critical distance of CNT-to-CNT separation was estimated, which determines if a CNT is attracted towards the electrode or if it is attracted by other CNTs away from the electrodes. Experimental evidence of CNTs dynamic motion under electric fields is presented to support the predicted trends.


Carbon nanotubes Dielectrophoresis Classical electrodynamics AC electric fields Dynamic motion 



Technical support of Carlos Falla and José Bante (CINVESTAV) in the experimental section is strongly appreciated.


This work was supported by the “Fondo Sectorial de Investigación para la Educación” through the SEP-CONACYT grant No. 235905 (A.I. Oliva-Avilés). V.V. Zozulya acknowledges additional support from CONACYT project No. 256458.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (MP4 372kb)

Supplementary material 2 (MP4 1577 kb)

Supplementary material 3 (MP4 1714 kb)

Supplementary material 4 (MP4 2284 kb)

Supplementary material 5 (MP4 29525 kb)


  1. 1.
    Aviles F, May-Pat A, Canche-Escamilla G, Rodriguez-Uicab O, Ku-Herrera JJ, Duarte-Aranda S et al (2014) Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites. J Intell Mater Syst Struct 27:92–103CrossRefGoogle Scholar
  2. 2.
    Oliva-Avilés AI, Avilés F, Sosa V, Oliva AI, Gamboa F (2012) Dynamics of carbon nanotube alignment by electric fields. Nanotechnology 23:465710CrossRefGoogle Scholar
  3. 3.
    Alamusi HuN, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11:10691–10723CrossRefGoogle Scholar
  4. 4.
    Pantano A, Cappello F (2008) Numerical model for composite material with polymer matrix reinforced by carbon nanotubes. Meccanica 43:263–270CrossRefzbMATHGoogle Scholar
  5. 5.
    Gkikas G, Paipetis AS (2015) Optimisation and analysis of the reinforcement effect of carbon nanotubes in a typical matrix system. Meccanica 50:461–478CrossRefGoogle Scholar
  6. 6.
    Čanađija M, Brčić M, Brnić J (2017) Elastic properties of nanocomposite materials: influence of carbon nanotube imperfections and interface bonding. Meccanica 52:1655–1668CrossRefGoogle Scholar
  7. 7.
    Ferreira ADBL, Nóvoa PR, Marques AT (2016) Multifunctional material systems: a state-of-the-art review. Compos Struct 151:3–35CrossRefGoogle Scholar
  8. 8.
    Siddiqui NA, Sham ML, Tang BZ, Munir A, Kim JK (2009) Tensile strength of glass fibres with carbon nanotube-epoxy nanocomposite coating. Compos Part A Appl S 40:1606–1614CrossRefGoogle Scholar
  9. 9.
    Sager RJ, Klein PJ, Lagoudas DC, Zhang Q, Liu J, Dai L, Baur JW (2009) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Technol 69:898–904CrossRefGoogle Scholar
  10. 10.
    Shi K, Zhitomirsky I (2013) Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors. J Colloid Interface Sci 407:474–481ADSCrossRefGoogle Scholar
  11. 11.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRefGoogle Scholar
  12. 12.
    Pandey G, Thostenson ET (2012) Carbon nanotube-based multifunctional polymer nanocomposites. Polym Rev 52:355–416CrossRefGoogle Scholar
  13. 13.
    Kanoun O, Müller C, Benchirouf A, Sanli A, Dinh TN, Al-Hamry A, Bu L, Gerlach C, Bouhamed A (2014) Flexible carbon nanotube films for high performance strain sensors. Sensors 14:10042–10071CrossRefGoogle Scholar
  14. 14.
    Ponnamma D, Guo Q, Krupa I, Al-Maadeed MASA, Varughese KT, Thomas S, Sadasivuni KK (2015) Graphene and graphitic derivative filled polymer composites as potential sensors. Phys Chem Chem Phys 17:3954–3981CrossRefGoogle Scholar
  15. 15.
    Brown DA, Kim JH, Lee HB, Fotouhi G, Lee KH, Liu WK, Chung JH (2012) Electric field guided assembly of one-dimensional nanostructures for high performance sensors. Sensors 12:5725–5751CrossRefGoogle Scholar
  16. 16.
    Yamamoto K, Akita S, Nakayama Y (1996) Orientation of carbon nanotubes using electrophoresis. Jpn J Appl Phys 35:L917–L918CrossRefGoogle Scholar
  17. 17.
    Yamamoto K, Akita S, Nakayama Y (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. J Phys D Appl Phys 31:L34–L36ADSCrossRefGoogle Scholar
  18. 18.
    Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos Sci Technol 64:2309–2316CrossRefGoogle Scholar
  19. 19.
    Monti M, Natali M, Torre L, Kenny JM (2012) The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field. Carbon 50:2453–2464CrossRefGoogle Scholar
  20. 20.
    Zhu YF, Ma C, Zhang W, Zhang RP, Koratkar N, Liang J (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105:054319ADSCrossRefGoogle Scholar
  21. 21.
    Lu Y, Chen C, Liu Y, Zhang Y (2009) Theoretical simulation on the assembly of carbon nanotubes between electrodes by AC dielectrophoresis. Nanoscale Res Lett 4:157–164ADSCrossRefGoogle Scholar
  22. 22.
    Chen Z, Yang Y, Chen F, Qing Q, Wu Z, Liu Z (2005) Controllable interconnection of single-walled carbon nanotubes under AC electric field. J Phys Chem B 109:11420–11423CrossRefGoogle Scholar
  23. 23.
    Oliva-Avilés AI, Avilés F, Sosa V, Seidel GD (2014) Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields. Carbon 69:342–354CrossRefGoogle Scholar
  24. 24.
    Wei Y, Wei W, Liu L, Fan S (2008) Mounting multi-walled carbon nanotubes on probes by dielectrophoresis. Diam Relat Mater 17:1877–1880ADSCrossRefGoogle Scholar
  25. 25.
    Murugesh AK, Uthayanan A, Lekakou C (2010) Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution. Appl Phys A 100:135–144ADSCrossRefGoogle Scholar
  26. 26.
    Baik S, Usrey M, Rotkina L, Strano M (2004) Using the selective functionalization of metallic single-walled carbon nanotubes to control dielectrophoretic mobility. J Phys Chem B 108:15560–15564CrossRefGoogle Scholar
  27. 27.
    Wu S, Ladani RB, Zhang J, Bafekrpour E, Ghorbani K, Mouritz AP, Kinloch AJ, Wang CH (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618CrossRefGoogle Scholar
  28. 28.
    Ma SJ, Guo WL (2008) Mechanism of carbon nanotubes aligning along applied electric field. Chin Phys Lett 25:270–273ADSCrossRefGoogle Scholar
  29. 29.
    Mostafa M, Banerjee S (2014) Predictive model for alignment and deposition of functionalized nanotubes using applied electric field. J Appl Phys 115:244309ADSCrossRefGoogle Scholar
  30. 30.
    Farajian AA, Pupysheva OV, Schmidt HK, Yakobson BI (2008) Polarization, energetics, and electrorheology in carbon nanotube suspensions under an applied electric field: an exact numerical approach. Phys Rev B 77:205432ADSCrossRefGoogle Scholar
  31. 31.
    Oliva-Avilés AI, Zozulya VV, Gamboa F, Avilés F (2016) Dynamic evolution of interacting carbon nanotubes suspended in a fluid using a dielectrophoretic framework. Physica E 83:7–21ADSCrossRefGoogle Scholar
  32. 32.
    Pohl HA (1978) Dielectrophoresis. Cambridge University Press, CambridgeGoogle Scholar
  33. 33.
    Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press LTD, BaldockGoogle Scholar
  34. 34.
    Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. 35.
    Abadi PPSS, Maschmann MR, Mortuza SM, Banerjee S, Baur JW, Graham S, Cola BA (2014) Reversible tailoring of mechanical properties of carbon nanotube forests by immersing in solvents. Carbon 69:178–187CrossRefGoogle Scholar
  36. 36.
    Rajter RF, French RH, Ching WY, Carter WC, Chiang YM (2007) Calculating van der Waals-London dispersion spectra and Hamaker coefficients of carbon nanotubes in water from ab initio optical properties. J Appl Phys 101:054303ADSCrossRefGoogle Scholar
  37. 37.
    An L, Friedrich CR (2009) Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes. J Appl Phys 105:074314ADSCrossRefGoogle Scholar
  38. 38.
    Kim JE, Han CS (2005) Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis. Nanotechnology 16:2245ADSCrossRefGoogle Scholar
  39. 39.
    Volkov AN, Zhigilei LV (2010) Mesoscopic interaction potential for carbon nanotubes of arbitrary length and orientation. J Phys Chem C 114:5513–5531CrossRefGoogle Scholar
  40. 40.
    Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110ADSCrossRefGoogle Scholar
  41. 41.
    Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63:1517–1524CrossRefGoogle Scholar
  42. 42.
    Kumar MS, Kim TH, Lee SH, Song SM, Yang JW, Nahm KS, Suh EK (2004) Influence of electric field type on the assembly of single walled carbon nanotubes. Chem Phys Lett 383:235–239ADSCrossRefGoogle Scholar
  43. 43.
    Sengezer EC, Seidel GD, Bodnar RJ (2015) Phenomenological characterization of fabrication of aligned pristine-SWNT and COOH-SWNT nanocomposites via dielectrophoresis under AC electric field. Polym Compos 36:1266–1279CrossRefGoogle Scholar
  44. 44.
    Li J, Zhang Q, Peng N, Zhu Q (2005) Manipulation of carbon nanotubes using AC dielectrophoresis. Appl Phys Lett 86:153116ADSCrossRefGoogle Scholar
  45. 45.
    Knite M, Linarts A, Ozols K, Tupureina V, Stalte I, Lapcinskis L (2017) A study of electric field-induced conductive aligned network formation in high structure carbon black/silicone oil fluids. Colloids Surf A 526:8–13CrossRefGoogle Scholar
  46. 46.
    Papadakis SJ, Hoffmann JA, Deglau D, Chen A, Tyagi P, Gracias DH (2011) Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. Nanoscale 3:1059–1065ADSCrossRefGoogle Scholar
  47. 47.
    Yang X, Zhu Y, Ji L, Zhang C, Liang J (2007) Influence of AC electric field on macroscopic network of carbon nanotubes in polystyrene. J Dispers Sci Technol 28:1164–1168CrossRefGoogle Scholar
  48. 48.
    Sam M, Moghimian N, Bhiladvala RB (2016) Field-directed chaining of nanowires: towards transparent electrodes. Mater Lett 163:205–208CrossRefGoogle Scholar
  49. 49.
    An L, Friedrich CR (2008) Real-time gap impedance monitoring of dielectrophoretic assembly of multiwalled carbon nanotubes. Appl Phys Lett 92:173103ADSCrossRefGoogle Scholar
  50. 50.
    Liu X, Spencer JL, Kaiser AB, Arnold WM (2004) Electric-field oriented carbon nanotubes in different dielectric solvents. Curr Appl Phys 4:125–128CrossRefGoogle Scholar
  51. 51.
    Suehiro J, Zhou G, Imakiire H, Ding W, Hara M (2005) Electric-field oriented carbon nanotubes in different dielectric solvents. Sens Actuators B 108:398–403CrossRefGoogle Scholar
  52. 52.
    Perrin F (1934) Mouvement brownien d’un ellipsoide—I. Dispersion diélectrique pour des molécules ellipsoidales. J Phys Radium 5:497–511CrossRefzbMATHGoogle Scholar
  53. 53.
    Perrin F (1936) Mouvement Brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J Phys Radium 7:1–11CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • A. I. Oliva-Avilés
    • 1
    Email author
  • A. Alonzo-García
    • 2
    • 3
  • V. V. Zozulya
    • 3
  • F. Gamboa
    • 4
  • J. Cob
    • 4
  • F. Avilés
    • 3
  1. 1.División de Ingeniería y Ciencias ExactasUniversidad Anáhuac MayabMéridaMexico
  2. 2.CONACYT-Centro de Ingeniería y Desarrollo IndustrialQuerétaroMexico
  3. 3.Centro de Investigación Científica de YucatánUnidad de MaterialesMéridaMexico
  4. 4.Departamento de Física Aplicada, Unidad MéridaCentro de Investigación y de Estudios Avanzados del IPNMéridaMexico

Personalised recommendations