, Volume 54, Issue 1–2, pp 101–121 | Cite as

A computational framework for fluid–porous structure interaction with large structural deformation

  • Rana Zakerzadeh
  • Paolo ZuninoEmail author


We study the effect of poroelasticity on fluid–structure interaction. More precisely, we analyze the role of fluid flow through a deformable porous matrix in the energy dissipation behavior of a poroelastic structure. For this purpose, we develop and use a nonlinear poroelastic computational model and apply it to the fluid–structure interaction simulations. We discretize the problem by means of the finite element method for the spatial approximation and using finite differences in time. The numerical discretization leads to a system of non-linear equations that are solved by Newton’s method. We adopt a moving mesh algorithm, based on the Arbitrary Lagrangian–Eulerian method to handle large deformations of the structure. To reduce the computational cost, the coupled problem of free fluid, porous media flow and solid mechanics is split among its components and solved using a partitioned approach. Numerical results show that the flow through the porous matrix is responsible for generating a hysteresis loop in the stress versus displacement diagrams of the poroelastic structure. The sensitivity of this effect with respect to the parameters of the problem is also analyzed.


Fluid–structure interaction Poroelasticity Finite deformations Energy dissipation 



This work has been supported by the fellowship from Computational Modeling and Simulation Ph.D. program, University of Pittsburgh.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chapelle D et al (2009) A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput Mech 46(1):91–101MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chabiniok R et al (2016) Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6(2):1–24Google Scholar
  3. 3.
    Calo VM et al (2008) Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput Mech 43(1):161–177MathSciNetzbMATHGoogle Scholar
  4. 4.
    Feenstra PH et al (2009) Drug transport in artery walls: a sequential porohyperelastic-transport approach. Comput Methods Biomech Biomed Eng 12(3):263–276Google Scholar
  5. 5.
    Badia S et al (2009) Coupling Biot and Navier–Stokes equations for modelling fluid–poroelastic media interaction. J Comput Phys 228(21):7986–8014ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Koshiba N et al (2007) Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J Biomech Eng 129(3):374–385Google Scholar
  7. 7.
    McCutchen CW (1982) Cartilage is poroelastic, not viscoelastic (including and exact theorem about strain energy and viscous loss, and an order of magnitude relation for equilibration time). J Biomech 15(4):325–327Google Scholar
  8. 8.
    Yang Z et al (2006) Dynamic finite element modeling of poroviscoelastic soft tissue. Comput Methods Biomech Biomed Eng 9(1):7–16Google Scholar
  9. 9.
    Armstrong MH et al (2016) A finite element model for mixed porohyperelasticity with transport, swelling, and growth. PLoS ONE 11(4):e0152806Google Scholar
  10. 10.
    Goriely A et al (2015) Mechanics of the brain: perspectives, challenges, and opportunities. Biomech Model Mechanobiol 14(5):931–965Google Scholar
  11. 11.
    Bukac M et al (2015) Effects of poroelasticity on fluid–structure interaction in arteries: a computational sensitivity study. In: Modeling the heart and the circulatory system. Springer, New York, pp 197–220Google Scholar
  12. 12.
    Bazilevs Y et al (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bazilevs Y et al (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198(45–46):3534–3550ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Crosetto P et al (2011) Fluid–structure interaction simulation of aortic blood flow. Comput Fluids 43(1):46–57MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chepelenko GV (2015) Atherosclerosis regulation via media lipid-driven VSMC cholesterol efflux switch. Med Hypotheses 84(2):141–144Google Scholar
  16. 16.
    Smith E (1990) Transport, interactions and retention of plasma proteins in the intima: the barrier function of the internal elastic lamina. Eur Heart J 11(suppl E):72–81Google Scholar
  17. 17.
    Zakerzadeh R, Bukac M, Zunino P (2015) Computational analysis of energy distribution of coupled blood flow and arterial deformation. Int J Adv Eng Sci Appl Math 8(1):70–85MathSciNetzbMATHGoogle Scholar
  18. 18.
    Burtschell B et al (2017) Effective and energy-preserving time discretization for a general nonlinear poromechanical formulation. Comput Struct 182:313–324Google Scholar
  19. 19.
    Vuong AT et al (2015) A general approach for modeling interacting flow through porous media under finite deformations. Comput Methods Appl Mech Eng 283:1240–1259ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Chapelle D et al (2014) General coupling of porous flows and hyperelastic formulations—from thermodynamics principles to energy balance and compatible time schemes. Eur J Mech B Fluids 46:82–96MathSciNetzbMATHGoogle Scholar
  21. 21.
    Balzani D, Deparis S, Fausten S, Forti D, Heinlein A, Klawonn A, Quarteroni A, Rheinbach O, Schröder J (2015) Numerical modeling of fluid–structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains. Int J Numer Methods Biomed Eng. Google Scholar
  22. 22.
    Tricerri P et al (2015) Fluid–structure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws. Comput Mech 55(3):479–498MathSciNetzbMATHGoogle Scholar
  23. 23.
    Bukač M et al (2015) Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput Methods Appl Mech Eng 292:138–170ADSMathSciNetGoogle Scholar
  24. 24.
    Zakerzadeh R et al (2014) Fluid–structure interaction in arteries with a poroelastic wall model. In: 21st Iranian conference of biomedical engineering (ICBME) IEEE, pp 35–39Google Scholar
  25. 25.
    Dunne T et al (2010) Numerical simulation of fluid–structure interaction based on monolithic variational formulations. In: Fundamental trends in fluid–structure interaction (contemporary challenges in mathematical fluid dynamics and its applications) vol 1, pp 1–75Google Scholar
  26. 26.
    Burman E et al (2014) Explicit strategies for incompressible fluid–structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling. Int J Numer Methods Eng 97(10):739–758MathSciNetzbMATHGoogle Scholar
  27. 27.
    Hansbo P (2005) Nitsche’s method for interface problems in computational mechanics. GAMM-Mitteilungen 28(2):183–206MathSciNetzbMATHGoogle Scholar
  28. 28.
    Yang M et al (1991) The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle. J Biomech 24(7):587–597Google Scholar
  29. 29.
    Taber LA et al (1996) Poroelastic plate and shell theories. In: Mechanics of poroelastic media. Springer, New York, pp 323–337Google Scholar
  30. 30.
    Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164ADSzbMATHGoogle Scholar
  31. 31.
    Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26(2):182–185ADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    Biot MA (1956) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 23(1):91–96MathSciNetzbMATHGoogle Scholar
  33. 33.
    Biot MA (1956) Theory of propagation of elastic waves in a fluid–saturated porous solid. I. Low–frequency range. J Acoust Soc Am 28(2):168–178ADSMathSciNetGoogle Scholar
  34. 34.
    Discacciati M et al (2009) Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Revista Matemática Complutense 22(2):315–426MathSciNetzbMATHGoogle Scholar
  35. 35.
    Quaini A et al (2007) A semi-implicit approach for fluid–structure interaction based on an algebraic fractional step method. Math Models Methods Appl Sci 17(6):957–983MathSciNetzbMATHGoogle Scholar
  36. 36.
    Uzuoka R et al (2012) Dynamics of unsaturated poroelastic solids at finite strain. Int J Numer Anal Methods Geomech 36(13):1535–1573Google Scholar
  37. 37.
    Coussy O (2004) Poromechanics. Wiley, New YorkzbMATHGoogle Scholar
  38. 38.
    Girault V et al (2015) A lubrication fracture model in a poro-elastic medium. Math Models Methods Appl Sci 25(4):587–645MathSciNetzbMATHGoogle Scholar
  39. 39.
    Fowler AC et al (1998) Fast and slow compaction in sedimentary basins. SIAM J Appl Math 59(1):365–385MathSciNetzbMATHGoogle Scholar
  40. 40.
    Holzapfel GA (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4):489–490Google Scholar
  41. 41.
    Burman E et al (2009) Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility. Comput Methods Appl Mech Eng 198(5–8):766–784ADSMathSciNetzbMATHGoogle Scholar
  42. 42.
    Quarteroni A et al (2010) Numerical mathematics, vol 37. Springer, New YorkzbMATHGoogle Scholar
  43. 43.
    Razzaq M et al (2009) Numerical simulation and benchmarking of fluid structure interaction with application to hemodynamics. Techn Univ, Fak für MathematikGoogle Scholar
  44. 44.
    Jendoubi A et al (2016) A simple mesh-update procedure for fluid–structure interaction problems. Comput Struct 169:13–23Google Scholar
  45. 45.
    Hecht F (2012) New development in freefem+. J Numer Math 20(3–4):251–265MathSciNetzbMATHGoogle Scholar
  46. 46.
    Brooks AN et al (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32(1):199–259ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    Ijiri T et al (2012) A kinematic approach for efficient and robust simulation of the cardiac beating motion. PLoS ONE 7(5):e36706ADSGoogle Scholar
  48. 48.
    Bukač M et al (2013) Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement. J Comput Phys 235:515–541ADSMathSciNetGoogle Scholar
  49. 49.
    Ren H et al (2009) Poroelastic analysis of permeability effects in thinly layered porous media. Geophysics 74(6):N49–N54Google Scholar
  50. 50.
    Costi JJ et al (2008) Frequency-dependent behavior of the intervertebral disc in response to each of six degree of freedom dynamic loading: solid phase and fluid phase contributions. Spine 33(16):1731Google Scholar
  51. 51.
    Cederbaum G et al (2000) Poroelastic structures. Elsevier, AmsterdamzbMATHGoogle Scholar
  52. 52.
    Yeh F-H et al (1998) Dynamic behavior of a poroelastic slab subjected to uniformly distributed impulsive loading. Comput Struct 67(4):267–277zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences (ICES)The University of Texas at AustinAustinUSA
  2. 2.Modeling and Scientific Computing (MOX), Department of MathematicsPolitecnico di MilanoMilanItaly

Personalised recommendations