Advertisement

Evaluation of neuroglobin and cytoglobin expression in adult rats exposed to silver nanoparticles during prepubescence

  • Rodrigo Rodrigues da ConceiçãoEmail author
  • Janaina Sena de Souza
  • Kelen Carneiro de Oliveira
  • Renata Marino Romano
  • Rui Monteiro de Barros Maciel
  • Magnus Régios Dias-da-Silva
  • Marco Aurélio Romano
  • Maria Izabel Chiamolera
  • Gisele Giannocco
Original Article
  • 25 Downloads

Abstract

Silver nanoparticles (AgNPs) are clusters of silver atoms with diameters that range from 1 to 100 nm. Due to the various shapes and large surface areas, AgNPs have been employed in the food and textile industries and medical fields. Therefore, because of the widespread use of these compounds, the aim of this study was to evaluate the effect of AgNP exposure on the gene and protein expression levels of Neuroglobin (Ngb) and Cytoglobin (Cygb), in the rat cortex, hippocampus and cerebellum. Post-natal day (PND) 21 male Wistar rats were randomly divided into three groups. One group received 15 μg/kg body weight of AgNP by gavage another group received 30 μg/kg and the control group that received saline, from PND23 to PND58. On PND102 the animals were euthanized and the cortex, hippocampus and cerebellum were isolated and evaluated for gene and protein expression levels of Nbg and Cygb. The results demonstrated that the 30 μg/kg AgNP group displayed increased gene and protein expression of Cygb in the cortex. In the Hippocampus, AgNP exposure did not modulate gene or protein expression levels of Ngb and Cygb. In cerebellum the Ngb gene and protein expression was increased with both doses of AgNP. AgNP exposure during prepubescence can modulate the gene and protein expression levels of Ngb and Cygb in adulthood. Furthermore, the observed modulation was specific to the cerebellum, and cortex, and was dose dependent.

Keywords

Silver nanoparticle Neuroglobin Cytoglobin Brain 

Notes

Acknowledgements

We thank the Coordenação de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for fincancial support through the grant to MRDS (23038009864/2013-98) and the scholarships to RRC, JSS, and KCO. We would also like to thank the Sao Paulo Research Foundation (FAPESP) for supporting this work through the research grant to MIC (2013/26851-7) and the scholarships to JSS (FAPESP 18952-21-7).

Compliance with ethical standards

Conflict of interest

We wish to confirm that there are no conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

References

  1. Ahmed OM, El-Gareib AW, El-Bakry AM, Abd El-Tawab SM, Ahmed RG (2008) Thyroid hormones states and brain development interactions. International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 26:147–209.  https://doi.org/10.1016/j.ijdevneu.2007.09.011 CrossRefGoogle Scholar
  2. Amiri S, Yousefi-Ahmadipour A, Hosseini MJ, Haj-Mirzaian A, Momeny M, Hosseini-Chegeni H, Mokhtari T, Kharrazi S, Hassanzadeh G, Amini SM, Jafarinejad S, Ghazi-Khansari M (2018) Maternal exposure to silver nanoparticles are associated with behavioral abnormalities in adulthood: role of mitochondria and innate immunity in developmental toxicity. Neurotoxicology 66:66–77.  https://doi.org/10.1016/j.neuro.2018.03.006 CrossRefPubMedGoogle Scholar
  3. Antao ST, Duong TT, Aran R, Witting PK (2010) Neuroglobin overexpression in cultured human neuronal cells protects against hydrogen peroxide insult via activating phosphoinositide-3 kinase and opening the mitochondrial K(ATP) channel. Antioxid Redox Signal 13:769–781.  https://doi.org/10.1089/ars.2009.2977 CrossRefPubMedGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Brunori M, Vallone B (2007) Neuroglobin, seven years after. Neuroglobin, seven years after Cellular and molecular life sciences : CMLS 64:1259–1268.  https://doi.org/10.1007/s00018-007-7090-2 CrossRefPubMedGoogle Scholar
  6. Burmester T, Ebner B, Weich B, Hankeln T (2002) Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 19:416–421.  https://doi.org/10.1093/oxfordjournals.molbev.a004096 CrossRefPubMedGoogle Scholar
  7. Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, Fuchs C, Hankeln T (2004) Neuroglobin and cytoglobin: genes, proteins and evolution. IUBMB Life 56:703–707.  https://doi.org/10.1080/15216540500037257 CrossRefPubMedGoogle Scholar
  8. Burmester T, Gerlach F, Hankeln T (2007) Regulation and role of neuroglobin and cytoglobin under hypoxia. Adv Exp Med Biol 618:169–180CrossRefGoogle Scholar
  9. Cai B, Lin Y, Xue XH, Fang L, Wang N, Wu ZY (2011) TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol 227:224–231.  https://doi.org/10.1016/j.expneurol.2010.11.009 CrossRefPubMedGoogle Scholar
  10. Cardinale A, Fusco FR, Paldino E, Giampà C, Marino M, Nuzzo MT, D’Angelo V, Laurenti D, Straccia G, Fasano D, Sarnataro D, Squillaro T, Paladino S, Melone MAB (2018) Localization of neuroglobin in the brain of R6/2 mouse model of Huntington's disease neurological sciences : official journal of the Italian. Neurological Society and of the Italian Society of Clinical Neurophysiology 39:275–285.  https://doi.org/10.1007/s10072-017-3168-2 CrossRefGoogle Scholar
  11. da Conceicao RR et al (2017) Anatomical specificity of the brain in the modulation of Neuroglobin and Cytoglobin genes after chronic bisphenol a exposure. Metab Brain Dis 32:1843–1851.  https://doi.org/10.1007/s11011-017-0066-5 CrossRefPubMedGoogle Scholar
  12. Dabrowska-Bouta B, Sulkowski G, Struzynski W, Struzynska L (2018) Prolonged exposure to silver nanoparticles results in oxidative stress in cerebral myelin. Neurotox Res.  https://doi.org/10.1007/s12640-018-9977-0
  13. Dan M, Wen H, Shao A, Xu L (2018) Silver nanoparticle exposure induces neurotoxicity in the rat Hippocampus without increasing the blood-brain barrier permeability. J Biomed Nanotechnol 14:1330–1338.  https://doi.org/10.1166/jbn.2018.2563 CrossRefPubMedGoogle Scholar
  14. van der Zande M, Vandebriel RJ, van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJB, Hollman PCH, Hendriksen PJM, Marvin HJP, Peijnenburg AACM, Bouwmeester H (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–7442.  https://doi.org/10.1021/nn302649p CrossRefPubMedGoogle Scholar
  15. Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103:1931–1944.  https://doi.org/10.1002/jps.24001 CrossRefPubMedGoogle Scholar
  16. Dussault AA, Pouliot M (2006) Rapid and simple comparison of messenger RNA levels using real-time PCR. Biological procedures online 8:1–10.  https://doi.org/10.1251/bpo114 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowski M, Krawczyńska A, Chwastowska J, Sadowska-Bratek M, Chajduk E, Wojewódzka M, Dušinská M, Kruszewski M (2012) Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. Journal of applied toxicology : JAT 32:920–928.  https://doi.org/10.1002/jat.2758 CrossRefPubMedGoogle Scholar
  18. Fathi N, Hoseinipanah SM, Alizadeh Z, Assari MJ, Moghimbeigi A, Mortazavi M, Haji Hosseini M, bahmanzadeh (2018) The effect of silver nanoparticles on the reproductive system of adult male rats: a morphological, histological and DNA integrity study. Advances in clinical and experimental medicine : official organ Wroclaw Medical University 28(0).  https://doi.org/10.17219/acem/81607
  19. Fordel E, Geuens E, Dewilde S, De Coen W, Moens L (2004) Hypoxia/ischemia and the regulation of neuroglobin and cytoglobin expression. IUBMB Life 56:681–687.  https://doi.org/10.1080/15216540500037406 CrossRefPubMedGoogle Scholar
  20. Fordel E, Thijs L, Martinet W, Lenjou M, Laufs T, van Bockstaele D, Moens L, Dewilde S (2006) Neuroglobin and cytoglobin overexpression protects human SH-SY5Y neuroblastoma cells against oxidative stress-induced cell death. Neurosci Lett 410:146–151.  https://doi.org/10.1016/j.neulet.2006.09.027 CrossRefPubMedGoogle Scholar
  21. Fordel E, Thijs L, Moens L, Dewilde S (2007) Neuroglobin and cytoglobin expression in mice. Evidence for a correlation with reactive oxygen species scavenging. FEBS J 274:1312–1317.  https://doi.org/10.1111/j.1742-4658.2007.05679.x CrossRefPubMedGoogle Scholar
  22. Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, Chen S, Goode AE, Theodorou IG, Chung KF, Carzaniga R, Shaffer MSP, Dexter DT, Ryan MP, Porter AE (2017) Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep 7:42871.  https://doi.org/10.1038/srep42871 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Greenberg DA, Jin K, Khan AA (2008) Neuroglobin: an endogenous neuroprotectant. Curr Opin Pharmacol 8:20–24.  https://doi.org/10.1016/j.coph.2007.09.003 CrossRefPubMedGoogle Scholar
  24. Guo X, Philipsen S, Tan-Un KC (2006) Characterization of human cytoglobin gene promoter region. Biochim Biophys Acta 1759:208–215.  https://doi.org/10.1016/j.bbaexp.2006.04.002 CrossRefPubMedGoogle Scholar
  25. Hu CL, Xia JM, Cai J, Li X, Liao XX, Li H, Zhan H, Dai G, Jing XL (2013) Ulinastatin attenuates oxidation, inflammation and neural apoptosis in the cerebral cortex of adult rats with ventricular fibrillation after cardiopulmonary resuscitation. Clinics 68:1231–1238.  https://doi.org/10.6061/clinics/2013(09)10 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Huang CL, Hsiao IL, Lin HC, Wang CF, Huang YJ, Chuang CY (2015) Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ Res 136:253–263.  https://doi.org/10.1016/j.envres.2014.11.006 CrossRefPubMedGoogle Scholar
  27. Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, Nyengaard JR, Kelsen J, Hay-Schmidt A (2010) Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res 1331:58–73.  https://doi.org/10.1016/j.brainres.2010.03.056 CrossRefPubMedGoogle Scholar
  28. Hundahl CA, Kelsen J, Hay-Schmidt A (2013) Neuroglobin and cytoglobin expression in the human brain. Brain Struct Funct 218:603–609.  https://doi.org/10.1007/s00429-012-0480-8 CrossRefPubMedGoogle Scholar
  29. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in vitro : an international journal published in association with BIBRA 19:975–983.  https://doi.org/10.1016/j.tiv.2005.06.034 CrossRefGoogle Scholar
  30. Juan L, Zhimin Z, Anchun M, Lei L, Jingchao Z (2010) Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int J Nanomedicine 5:261–267CrossRefGoogle Scholar
  31. Khan AA, Wang Y, Sun Y, Mao XO, Xie L, Miles E, Graboski J, Chen S, Ellerby LM, Jin K, Greenberg DA (2006) Neuroglobin-overexpressing transgenic mice are resistant to cerebral and myocardial ischemia. Proc Natl Acad Sci U S A 103:17944–17948.  https://doi.org/10.1073/pnas.0607497103 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101.  https://doi.org/10.1016/j.nano.2006.12.001 CrossRefPubMedGoogle Scholar
  33. Krawczynska A et al (2015) Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin-angiotensin system in brain. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 85:96–105.  https://doi.org/10.1016/j.fct.2015.08.005 CrossRefGoogle Scholar
  34. Lankveld DP et al (2010) The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31:8350–8361.  https://doi.org/10.1016/j.biomaterials.2010.07.045 CrossRefPubMedGoogle Scholar
  35. Lee H-Y, Choi YJ, Jung EJ, Yin HQ, Kwon JT, Kim JE, Im HT, Cho MH, Kim JH, Kim HY, Lee BH (2010) Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation. J Nanopart Res 12:1567–1578.  https://doi.org/10.1007/s11051-009-9666-2 CrossRefGoogle Scholar
  36. Li W, Wu Y, Ren C, Lu Y, Gao Y, Zheng X, Zhang C (2011) The activity of recombinant human neuroglobin as an antioxidant and free radical scavenger. Proteins 79:115–125.  https://doi.org/10.1002/prot.22863 CrossRefPubMedGoogle Scholar
  37. Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam H, Larsen EH (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Particle and fibre toxicology 8:18.  https://doi.org/10.1186/1743-8977-8-18 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Maglione AV, Taranto P, Hamermesz B, Souza JS, Cafarchio EM, Ogihara CA, Maciel RMB, Giannocco G, Sato MA (2018) Impact of swimming exercise on inflammation in medullary areas of sympathetic outflow control in spontaneously hypertensive rats. Metab Brain Dis 33:1649–1660.  https://doi.org/10.1007/s11011-018-0273-8 CrossRefPubMedGoogle Scholar
  39. Marambio-Jones C, Hoe EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(20):1531–1551.  https://doi.org/10.1007/s11051-010-9900-y CrossRefGoogle Scholar
  40. Martin JD, Frost PC, Hintelmann H, Newman K, Paterson MJ, Hayhurst L, Rennie MD, Xenopoulos MA, Yargeau V, Metcalfe CD (2018) Accumulation of silver in yellow perch ( Perca flavescens) and northern pike ( Esox lucius) from a Lake dosed with Nanosilver. Environ Sci Technol 52:11114–11122.  https://doi.org/10.1021/acs.est.8b03146 CrossRefPubMedGoogle Scholar
  41. Mathias FT, Romano RM, Kizys MML, Kasamatsu T, Giannocco G, Chiamolera MI, Dias-da-Silva MR, Romano MA (2015) Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology 9:64–70.  https://doi.org/10.3109/17435390.2014.889237 CrossRefPubMedGoogle Scholar
  42. Mathur P, Jha S, Ramteke S, Jain NK (2017) Pharmaceutical aspects of silver nanoparticles. Artificial cells, nanomedicine, and biotechnology:1–12.  https://doi.org/10.1080/21691401.2017.1414825
  43. Moens L, Dewilde S (2000) Globins in the brain. Nature 407:461–462.  https://doi.org/10.1038/35035181 CrossRefPubMedGoogle Scholar
  44. Oleksiewicz U, Liloglou T, Field JK, Xinarianos G (2011) Cytoglobin: biochemical, functional and clinical perspective of the newest member of the globin family. Cellular and molecular life sciences : CMLS 68:3869–3883.  https://doi.org/10.1007/s00018-011-0764-9 CrossRefPubMedGoogle Scholar
  45. Oliveira KC, da Conceicao RR, Piedade GC, de Souza JS, Sato MA, de Barros Maciel RM, Giannocco G (2015) Thyroid hormone modulates neuroglobin and cytoglobin in rat brain. Metab Brain Dis 30:1401–1408.  https://doi.org/10.1007/s11011-015-9718-5 CrossRefPubMedGoogle Scholar
  46. Ou L, Li X, Chen B, Ge Z, Zhang J, Zhang Y, Cai G, Li Z, Wang P, Dong W (2018) Recombinant human Cytoglobin prevents atherosclerosis by regulating lipid metabolism and oxidative stress. J Cardiovasc Pharmacol Ther 23:162–173.  https://doi.org/10.1177/1074248417724870 CrossRefPubMedGoogle Scholar
  47. Quadros ME, Marr LC (2010) Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manage Assoc 60:770–781CrossRefGoogle Scholar
  48. Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, Murdock RC, Schlager JJ, Hussain SM, Ali SF (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187:15–21.  https://doi.org/10.1016/j.toxlet.2009.01.020 CrossRefPubMedGoogle Scholar
  49. Rejewski D (2009) Nanotechnology and consumer productsGoogle Scholar
  50. Renis M, Calabrese V, Russo A, Calderone A, Barcellona ML, Rizza V (1996) Nuclear DNA strand breaks during ethanol-induced oxidative stress in rat brain. FEBS Lett 390:153–156CrossRefGoogle Scholar
  51. Salomoni R, Leo P, Montemor AF, Rinaldi BG, Rodrigues M (2017) Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 10:115–121.  https://doi.org/10.2147/NSA.S133415 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Skalska J, Dabrowska-Bouta B, Struzynska L (2016) Oxidative stress in rat brain but not in liver following oral administration of a low dose of nanoparticulate silver. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 97:307–315.  https://doi.org/10.1016/j.fct.2016.09.026 CrossRefGoogle Scholar
  53. Sun Y, Jin K, Mao XO, Zhu Y, Greenberg DA (2001) Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci U S A 98:15306–15311.  https://doi.org/10.1073/pnas.251466698 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sun Y, Jin K, Peel A, Mao XO, Xie L, Greenberg DA (2003) Neuroglobin protects the brain from experimental stroke in vivo. Proc Natl Acad Sci U S A 100:3497–3500.  https://doi.org/10.1073/pnas.0637726100 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tae B, Oliveira KC, Conceição RR, Valenti VE, de Souza JS, Laureano-Melo R, Sato MA, Maciel RM B, Giannocco G (2017) Evaluation of globins expression in brain, heart, and lung in rats exposed to side stream cigarette smoke. Environ Toxicol 32:1252–1261  https://doi.org/10.1002/tox.22321
  56. Ter-Minassian A (2006) Cerebral metabolism and brain injury. Ann Fr Anesth Reanim 25:714–721.  https://doi.org/10.1016/j.annfar.2006.03.009 CrossRefPubMedGoogle Scholar
  57. Van Acker ZP, Luyckx E, Dewilde S (2018) Neuroglobin expression in the brain: a story of tissue homeostasis preservation. Mol Neurobiol.  https://doi.org/10.1007/s12035-018-1212-8
  58. Vazquez-Garcia F, Tanomaru-Filho M, Chavez-Andrade GM, Bosso-Martelo R, Basso-Bernardi MI, Guerreiro-Tanomaru JM (2016) Effect of silver nanoparticles on physicochemical and antibacterial properties of calcium silicate cements. Braz Dent J 27:508–514.  https://doi.org/10.1590/0103-6440201600689 CrossRefPubMedGoogle Scholar
  59. Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27:344–350CrossRefGoogle Scholar
  60. Xu L, Shao A, Zhao Y, Wang Z, Zhang C, Sun Y, Deng J, Chou LL (2015) Neurotoxicity of silver nanoparticles in rat brain after Intragastric exposure. J Nanosci Nanotechnol 15:4215–4223CrossRefGoogle Scholar
  61. Yu SJ, Yin YG, Liu JF (2013) Silver nanoparticles in the environment. Environmental science Processes & impacts 15:78–92CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rodrigo Rodrigues da Conceição
    • 1
    Email author
  • Janaina Sena de Souza
    • 1
  • Kelen Carneiro de Oliveira
    • 1
  • Renata Marino Romano
    • 2
  • Rui Monteiro de Barros Maciel
    • 1
  • Magnus Régios Dias-da-Silva
    • 1
  • Marco Aurélio Romano
    • 2
  • Maria Izabel Chiamolera
    • 1
  • Gisele Giannocco
    • 1
    • 3
  1. 1.Laboratório de Endocrinologia Molecular e Translacional, Departamento de Medicina, Disciplina de Endocrinologia ClínicaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
  2. 2.Laboratory of Reproductive Toxicology, Department of PharmacyState University of Centro-OesteParanaBrazil
  3. 3.Departamento de Ciências BiológicasUniversidade Federal de São PauloDiademaBrazil

Personalised recommendations