Advertisement

IFNG/IFNG-AS1 expression level balance: implications for autism spectrum disorder

  • Hamid Fallah
  • Arezou SayadEmail author
  • Fatemeh Ranjbaran
  • Fatemeh Talebian
  • Soudeh Ghafouri-Fard
  • Mohammad TaheriEmail author
Original Article

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with different epidemiological, genetic, epigenetic, and environmental factors. Although its etiology is not fully understood, immune dysfunction is implicated in this disease. Recently, a large number of genes encoding long noncoding RNAs (lncRNAs) were discovered which act as positive or negative regulators of neighboring target genes. The lncRNA, Interferon gamma-antisense RNA (IFNG-AS1), regulates expression levels of the Interferon gamma (IFNG) gene. In the present study, we investigated expression of IFNG and IFNG-AS1 in 50 children with ASD (15 females and 35 males, mean age: 6 ± 1.4 years) and 50 healthy controls (14 females and 36 males, mean age: 6 ± 1.74 years) by real time PCR technique. The results showed significant up-regulation of IFNG and down-regulation of IFNG-AS1 expression in children with ASD compared to controls (Fold change = 1.5, P < 0.0001; Fold change = −0.143, P = 0.013, respectively). The IFNG expression level increase was more pronounced in male ASD children (Fold change = 1.621; p < 0.0001). Our data reveal a functional disruption in the interactive network of IFNG/IFNG-AS1 regulation, which could be a contributing factor in the chronic inflammatory aspect of ASD. Our findings can help understanding the underlying contributors to ASD pathogenesis and find novel treatment options for children with ASD.

Keywords

Autism spectrum disorder (ASD) INFG INFG-AS1 

Notes

Acknowledgments

The present study was supported by a grant from Shahid Beheshti University of Medical Sciences (grant number: 14254).

Compliance with ethical standards

Conflict of interest

The authors declare that have no conflict of interest.

References

  1. AbuHashim HM (2013) Association between plasma levels of transforming growth factor-b1, IL-23 and IL-17 and the severity of autism in Egyptian children. Elsevier Ltd. 7Google Scholar
  2. Akbar AN, Lord JM, Salmon MJIT (2000) Ifn-Α and Ifn-Β: a link between immune memory and chronic inflammation. Immunol Today 21:337–342PubMedCrossRefGoogle Scholar
  3. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders 5th edition: DSM 5. American Psychiatric Association, ArlingtonCrossRefGoogle Scholar
  4. Ashwood P, Wills S, Van De Water JJJOLB (2006) The immune response in autism: a new frontier for autism research. J Leukoc Biol 80:1–15PubMedCrossRefGoogle Scholar
  5. Ashwood P, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen RL, Croen LA, Ozonoff S, Pessah IN, Van De Water JJJON (2008) Decreased transforming growth factor Beta1 in autism: a potential link between immune dysregulation and impairment in clinical behavioral outcomes. J Neuroimmunol 204:149–153PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van De Water JJJON (2011) Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol 232:196–199PubMedCrossRefGoogle Scholar
  7. Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer RJPB (2011) Why are autism spectrum conditions more prevalent in males? PLoS Biol 9:E1001081PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bauman MLJN (2010) Medical comorbidities in autism: challenges to diagnosis and treatment. Neurotherapeutics 7:320–327PubMedPubMedCentralCrossRefGoogle Scholar
  9. Corbin JG, Kelly D, Rath EM, Baerwald KD, Suzuki K, Popko BJM, Neuroscience C (1996) Targeted Cns expression of interferon-Γ in transgenic mice leads to hypomyelination, reactive gliosis, and abnormal cerebellar development. Mol Cell Neurosci 7:354–370PubMedCrossRefGoogle Scholar
  10. Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M (2002) Activation of the inflammatory response system in autism. Neuropsychobiology 45:1–6PubMedCrossRefGoogle Scholar
  11. Dorahy MJ (2014) The Diagnostic and Statistical Manual of Mental Disorders–5th edition (DSM-5)Google Scholar
  12. Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN, Hertz-Picciotto I, Van De Water JA, Sharp FR, Ashwood P (2009) Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav Immun 23:124–133PubMedCrossRefGoogle Scholar
  13. Estes ML, Mcallister AKJNRN (2015) Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci 16:469PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fombonne EJRDIAR (2005) In: Casanova Mf (ed) The epidemiology of pervasive developmental disorders, pp 1–25Google Scholar
  15. Fombonne EJPR (2009) Epidemiology of pervasive developmental disorders. Pediatr Res 65:591PubMedCrossRefGoogle Scholar
  16. Fombonne E, Simmons H, Ford T, Meltzer H, Goodman RJJOTAAOC, Psychiatry A (2001) Prevalence of pervasive developmental disorders in the British Nationwide survey of child mental health. J Am Acad Child Adolesc Psychiatry 40:820–827PubMedCrossRefGoogle Scholar
  17. Goines P, Van De Water JJCOIN (2010) The immune system’s role in the biology of autism. Curr Opin Neurol 23:111PubMedPubMedCentralCrossRefGoogle Scholar
  18. Gomez JA, Wapinski OL, Yang YW, Bureau J-F, Gopinath S, Monack DM, Chang HY, Brahic M, Kirkegaard KJC (2013) The Nest Long Ncrna controls microbial susceptibility and epigenetic activation of the interferon-Γ locus. Cell 152:743–754PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hamedani SY, Gharesouran J, Noroozi R, Sayad A, Omrani MD, Mir A, Afjeh SSA, Toghi M, Manoochehrabadi S, Ghafouri-Fard SJMBD (2017) Ras-like without Caax 2 (Rit2): a susceptibility gene for autism Spectrum disorder. Metab Brain Dis 32:751–755PubMedCrossRefPubMedCentralGoogle Scholar
  20. Inoue R, Sakaue Y, Sawai C, Sawai T, Ozeki M, Romero-Pérez GA, Tsukahara TJB (2016) A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism Spectrum disorders. Biosci Biotechnol Biochem 80:2450–2458PubMedCrossRefGoogle Scholar
  21. Jacquemont S, Coe BP, Hersch M, Duyzend MH, Krumm N, Bergmann S, Beckmann JS, Rosenfeld JA, Eichler EEJTAJOHG (2014) A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am J Hum Genet 94:415–425PubMedPubMedCentralCrossRefGoogle Scholar
  22. Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910PubMedCrossRefGoogle Scholar
  23. Lee PY, Li Y, Kumagai Y, Xu Y, Weinstein JS, Kellner ES, Nacionales DC, Butfiloski EJ, Van Rooijen N, Akira SJTAJOP (2009) Type I interferon modulates monocyte recruitment and maturation in chronic inflammation. Am J Pathol 175:2023–2033PubMedPubMedCentralCrossRefGoogle Scholar
  24. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207:111–116PubMedPubMedCentralCrossRefGoogle Scholar
  25. Li H, Hao Y, Zhang D, Fu R, Liu W, Zhang X, Xue F, Yang RJA (2016) Aberrant expression of Long noncoding Rna Tmevpg1 in patients with primary immune thrombocytopenia. Autoimmunity 49:496–502PubMedCrossRefGoogle Scholar
  26. Luo M, Liu X, Meng H, Xu L, Li Y, Li Z, Liu C, Luo Y-B, Hu B, Xue YJCI (2017) Ifna-As1 regulates Cd4+ T cell activation in myasthenia gravis though Hla-Drb1. Clin Immunol 183:121–131PubMedCrossRefGoogle Scholar
  27. Mannion A, Leader GJRIASD (2013) Comorbidity in autism Spectrum disorder: a literature review. Res Autism Spectr Disord 7:1595–1616CrossRefGoogle Scholar
  28. Masi A, Demayo MM, Glozier N, Guastella AJJNB (2017) An overview of autism Spectrum disorder, heterogeneity and treatment options. Neurosci Bull 33:183–193PubMedPubMedCentralCrossRefGoogle Scholar
  29. Noroozi R, Taheri M, Movafagh A, Mirfakhraie R, Solgi G, Sayad A, Mazdeh M, Darvish HJAR (2016) Glutamate receptor, metabotropic 7 (Grm7) gene variations and susceptibility to autism: a case–control study. Autism Res 9:1161–1168PubMedCrossRefGoogle Scholar
  30. Noroozi R, Ghafouri-Fard S, Omrani MD, Habibi M, Sayad A, Taheri MJG (2017) Association study of the vesicular monoamine transporter 1 (Vmat1) gene with autism in an Iranian population. Gene 625:10–14PubMedCrossRefGoogle Scholar
  31. Onore C, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen R, Van De Water J, Ashwood PJJON (2009) Decreased cellular Il-23 but not Il-17 production in children with autism Spectrum disorders. J Neuroimmunol 216:126–129PubMedPubMedCentralCrossRefGoogle Scholar
  32. Paakki J-J, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J, Starck T, Remes J, Hurtig T, Haapsamo HJBR (2010) Alterations in regional homogeneity of resting-state brain activity in autism Spectrum disorders. Brain Res 1321:169–179PubMedCrossRefGoogle Scholar
  33. Padua D, Mahurkar-Joshi S, Law IKM, Polytarchou C, Vu JP, Pisegna JR, Shih D, Iliopoulos D, Pothoulakis CJAJOP-G, Physiology, L. (2016) A Long noncoding Rna signature for ulcerative colitis identifies Ifng-As1 as an enhancer of inflammation. Am J Physiol Gastrointest Liver Physiol 311:G446–G457PubMedPubMedCentralCrossRefGoogle Scholar
  34. Peng H, Liu Y, Tian J, Ma J, Tang X, Rui K, Tian X, Mao C, Lu L, Xu HJSR (2015) The Long noncoding Rna Ifng-As1 promotes T helper type 1 cells response in patients with Hashimoto’s thyroiditis. Sci Rep 5:17702PubMedPubMedCentralCrossRefGoogle Scholar
  35. Platanias LCJNRI (2005) Mechanisms of type-I-and type-ii-interferon-mediated Signalling. Nat Rev Immunol 5:375PubMedCrossRefGoogle Scholar
  36. Ricci S, Businaro R, Ippoliti F, Vasco VL, Massoni F, Onofri E, Troili G, Pontecorvi V, Morelli M, Ricciardi MRJNR (2013) Altered cytokine and Bdnf levels in autism Spectrum disorder. Neurotox Res 24:491–501PubMedCrossRefGoogle Scholar
  37. Safari MR, Ghafouri-Fard S, Noroozi R, Sayad A, Omrani MD, Komaki A, Eftekharian MM, Taheri MJG (2017) Foxp3 gene variations and susceptibility to autism: a case–control study. Gene 596:119–122PubMedCrossRefGoogle Scholar
  38. Sayad A, Noroozi R, Omrani MD, Taheri M, Ghafouri-Fard SJMBD (2017) Retinoic acid-related orphan receptor alpha (Rora) variants are associated with autism Spectrum disorder. Metab Brain Dis 32:1595–1601PubMedCrossRefGoogle Scholar
  39. Schroder K, Hertzog PJ, Ravasi T, Hume DAJJOLB (2004) Interferon-Γ: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189PubMedCrossRefGoogle Scholar
  40. Shatz CJJN (2009) Mhc class I: an unexpected role in neuronal plasticity. Neuron 64:40–45PubMedPubMedCentralCrossRefGoogle Scholar
  41. Shaw C, Sheth S, Li D, Tomljenovic LJOA (2014) Etiology of autism Spectrum disorders: genes, environment, or both. OA Autism 2:11Google Scholar
  42. Spurlock CF, Shaginurova G, Tossberg JT, Hester JD, Chapman N, Guo Y, Crooke PS, Aune TM (2017) Profiles of long noncoding RNAs in human naive and memory T cells. The Journal of Immunology 199(2), pp.547-558PubMedCrossRefGoogle Scholar
  43. Suzuki K, Matsuzaki H, Iwata K, Kameno Y, Shimmura C, Kawai S, Yoshihara Y, Wakuda T, Takebayashi K, Takagai SJPO (2011) Plasma cytokine profiles in subjects with high-functioning autism Spectrum disorders. PLoS One 6:E20470PubMedPubMedCentralCrossRefGoogle Scholar
  44. Tager-Flusberg H, Paul R, Lord CJHOA & Disorders, P. D. (2005) Language and communication in autism, vol 1, pp 335–364Google Scholar
  45. Tostes M, Teixeira H, Gattaz W, Brandao M, Raposo NJP (2012) Altered Neurotrophin, neuropeptide, cytokines and nitric oxide levels in autism. Pharmacopsychiatry. 45:241PubMedCrossRefGoogle Scholar
  46. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CAJAONOJOTANA, Society, T. C. N (2005) Neuroglial activation and Neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81PubMedCrossRefGoogle Scholar
  47. Vigil D, Cherfils J, Rossman KL, Der CJJNRC (2010) Ras superfamily Gefs and gaps: validated and tractable targets for Cancer therapy? Nat Rev Cancer 10:842PubMedPubMedCentralCrossRefGoogle Scholar
  48. Wang J, Peng H, Tian J, Ma J, Tang X, Rui K, Tian X, Wang Y, Chen J, Lu LJIR (2016) Upregulation of Long noncoding Rna Tmevpg1 enhances T helper type 1 cell response in patients with Sjögren syndrome. Immunol Res 64:489–496PubMedCrossRefGoogle Scholar
  49. Werling DM, Geschwind DHJCOIN (2013) Sex differences in autism Spectrum disorders. Curr Opin Neurol 26:146PubMedPubMedCentralCrossRefGoogle Scholar
  50. Wing L, Potter DJMR, Reviews DDR (2002) The epidemiology of autistic Spectrum disorders: is the prevalence rising? Ment Retard Dev Disabil Res Rev 8:151–161PubMedCrossRefGoogle Scholar
  51. Xu Y, Shao BJJOCLA (2018) Circulating Lncrna Ifng-As1 expression correlates with increased disease risk, higher disease severity and elevated inflammation in patients with coronary artery disease. J Clin Lab Anal 37:E22452CrossRefGoogle Scholar
  52. Yaghoobi H, Azizi H, Oskooei VK, Taheri M, Ghafouri-Fard S (2018) Assessment of expression of interferon gamma (Ifn-G) gene and its antisense (Ifng-As1) in breast cancer. World J Surg Oncol 16:211PubMedPubMedCentralCrossRefGoogle Scholar
  53. Zerbo O, Leong A, Barcellos L, Bernal P, Fireman B, Croen LAJB, Behavior, & Immunity (2015) Immune mediated conditions in autism Spectrum disorders. Brain Behav Immun 46:232–236PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hamid Fallah
    • 1
  • Arezou Sayad
    • 1
    Email author
  • Fatemeh Ranjbaran
    • 2
  • Fatemeh Talebian
    • 3
  • Soudeh Ghafouri-Fard
    • 1
  • Mohammad Taheri
    • 1
    • 4
    Email author
  1. 1.Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Iran University of Medical SciencesTehranIran
  3. 3.Ohio State University Medical CenterColumbusUSA
  4. 4.Urogenital Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations