Advertisement

Predictive value of induced hyperammonaemia and neuropsychiatric profiling in relation to the occurrence of post-TIPS hepatic encephalopathy

  • Marco Senzolo
  • Lisa Zarantonello
  • Chiara Formentin
  • Costanza Orlando
  • Raffaello Beltrame
  • Anna Vuerich
  • Paolo Angeli
  • Patrizia Burra
  • Sara MontagneseEmail author
Original Article
  • 12 Downloads

Abstract

Hepatic encephalopathy (HE) occurs in 20–50% of patients after transjugular intrahepatic portosystemic shunt (TIPS) placement. Older age, HE history and severe liver failure have all been associated with post-TIPS HE but it remains difficult to identify patients at risk. The aim of the present pathophysiological, pilot study was to assess the role of induced hyperammonaemia and associated neuropsychological and neurophysiological changes as predictors of post-TIPS HE. Eighteen TIPS candidates with no overt HE history (56 ± 8 yrs., MELD 11 ± 3) underwent neurophysiological [Electroencephalography (EEG)], neuropsychological [Psychometric Hepatic Encephalopathy Score (PHES) and Scan tests], ammonia and sleepiness assessment at baseline and after the induction of hyperammonaemia by an oral amino acid challenge (AAC). Pre-AAC, 17% of patients had abnormal EEG, 5% abnormal PHES, and 33% abnormal Scan performance. Post-AAC, 17% had abnormal EEG, 0% abnormal PHES, and 17% abnormal Scan performance. Pre-AAC, ammonia concentrations were 201 ± 73 μg/dL and subjective sleepiness 2.5 ± 1.2 (1–9 scale). Post-AAC, patients exhibited the expected increase in ammonia/sleepiness. Six months post-TIPS, 3 patients developed an episode of HE requiring hospitalization; these showed significantly lower pre-AAC fasting ammonia concentrations compared to patients who did not develop HE (117 ± 63 vs. 227 ± 57 μg/dL p = 0.015). They also showed worse PHES/Scan performance pre-AAC, and worse Scan performance post-AAC. Findings at 12 months follow-up (n = 5 HE episodes) were comparable. In conclusion, baseline ammonia levels and both pre- and post-AAC neuropsychiatric indices hold promise in defining HE risk in TIPS candidates with no HE history.

Keywords

Cirrhosis Ammonia Oral amino acid challenge Prognosis 

Notes

Compliance with ethical standards

Conflict of interest

None.

References

  1. Åkerstedt T, Gillberg M (1990) Subjective and objective sleepiness in the active individual. Int J Neurosci 52:29–37CrossRefGoogle Scholar
  2. Al Mardini H, Douglass H, Record C (2006) Amino acid challenge in patients with cirrhosis and control subjects: Ammonia, plasma amino acid and EEG changes. Metab Brain Dis 21:1–10CrossRefGoogle Scholar
  3. Amodio P, Marchetti P, Del Piccolo F et al (1998) Study on the Sternberg paradigm in cirrhotic patients without overt hepatic encephalopathy. Metab Brain Dis 13:159–172CrossRefGoogle Scholar
  4. Amodio P, Marchetti P, Del Piccolo F et al (1999) Spectral versus visual EEG analysis in mild hepatic encephalopathy. Clin Neurophysiol 110:1334–1344CrossRefGoogle Scholar
  5. Amodio P, Montagnese S, Gatta A et al (2004) Characteristics of minimal hepatic encephalopathy. Metab Brain Dis 19:253–267CrossRefGoogle Scholar
  6. Amodio P, Campagna F, Olianas S et al (2008) Detection of minimal hepatic encephalopathy: normalization and optimization of the psychometric hepatic encephalopathy score. A neuropsychological and quantified EEG study. J Hepatol 49:346–353CrossRefGoogle Scholar
  7. Amodio P, Montagnese S, Spinelli G et al (2017) Cognitive reserve is a resilience factor for cognitive dysfunction in hepatic encephalopathy. Metab Brain Dis 32:1287–1293CrossRefGoogle Scholar
  8. Balata S, Damink SW, Ferguson K et al (2003) Induced hyperammonemia alters neuropsychology, brain MR spectroscopy and magnetization transfer in cirrhosis. Hepatology 37:931–939CrossRefGoogle Scholar
  9. Berlioux P, Robic MA, Poirson H et al (2014) Pre-transjugular intrahepatic portosystemic shunts (TIPS) prediction of post-TIPS overt hepatic encephalopathy: the critical flicker frequency is more accurate than psychometric tests. Hepatology. 59:622–629CrossRefGoogle Scholar
  10. Bersagliere A, Raduazzo ID, Nardi M et al (2012) Induced hyperammonemia may compromise the ability to generate restful sleep in patients with cirrhosis. Hepatology 55:869–878CrossRefGoogle Scholar
  11. Bersagliere A, Raduazzo ID, Schiff S et al (2013) Ammonia-related changes in cerebral electrogenesis in healthy subjects and patients with cirrhosis. Clin Neurophysiol 124:492–646CrossRefGoogle Scholar
  12. Casado M, Bosch J, García-Pagán JC et al (1998) Clinical events after transjugular intrahepatic portosystemic shunt: correlation with hemodynamic findings. Gastroenterology 114:1296–1303CrossRefGoogle Scholar
  13. Casula EP, Bisiacchi PS, Corrias M et al (2015) Acute hyperammonaemia induces a sustained decrease in vigilance, which is modulated by caffeine. Metab Brain Dis 30:143–149CrossRefGoogle Scholar
  14. Del Piccolo F, Sacerdoti D, Amodio P et al (2002) Central nervous system alterations in liver cirrhosis: the role of portal-systemic shunt and portal hypoperfusion. Metab Brain Dis 17:347–358CrossRefGoogle Scholar
  15. Douglass A, Al Mardini H, Record C (2001) Amino acid challenge in patients with cirrhosis: a model for the assessment of treatments for hepatic encephalopathy. J Hepatol 34:658–664CrossRefGoogle Scholar
  16. Guevara M, Baccaro ME, Ríos J et al (2010) Risk factors for hepatic encephalopathy in patients with cirrhosis and refractory ascites: relevance of serum sodium concentration. Liver Int 30:1137–1142CrossRefGoogle Scholar
  17. Huizenga JR, Gips CH, Conn HO et al (1995) Determination of ammonia in ear-lobe capillary blood is an alternative to arterial blood ammonia. Clin Chim Acta 239:65–70CrossRefGoogle Scholar
  18. Irimia R, Stanciu C, Cojocariu C et al (2013) Oral glutamine challenge improves the performance of psychometric tests for the diagnosis of minimal hepatic encephalopathy in patients with liver cirrhosis. J Gastrointestin Liver Dis 22:277–281Google Scholar
  19. Maier KP, Talke H, Gerok W (1979) Activities of urea-cycle enzymes in chronic liver disease. Klin Wochenschr 13:661–665CrossRefGoogle Scholar
  20. Mardini B, Saxby BK, Record CO (2008) Computerized psychometric testing in minimal encephalopathy and modulation by nitrogen challenge and liver transplant. Gastroenterology 135:1582–1590CrossRefGoogle Scholar
  21. Mardini H, Smith FE, Record CO et al (2011) Magnetic resonance quantification of water and metabolites in the brain of cirrhotics following induced hyperammonaemia. J Hepatol 54:1154–1160CrossRefGoogle Scholar
  22. McDermott WV, Adams RD (1954) Episodic stupor associated with an Eck fistula in the human with particular reference to the metabolism of ammonia. J Clin Invest 33:1–9CrossRefGoogle Scholar
  23. Montagnese S, Biancardi A, Schiff S et al (2011) Different biochemical correlates for different neuropsychiatric abnormalities in patients with cirrhosis. Hepatology. 53:558–566CrossRefGoogle Scholar
  24. Montagnese S, Schiff S, Turco M et al (2012) Simple tools for complex syndromes: a three-level difficulty test for hepatic encephalopathy. Dig Liver Dis 44:957–960CrossRefGoogle Scholar
  25. Nardelli S, Gioia S, Pasquale C et al (2016) Cognitive impairment predicts the occurrence of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt. Am J Gastroenterol 111:523–528CrossRefGoogle Scholar
  26. Nolte W, Wiltfang J, Schindler C et al (1998) Portosystemic hepatic encephalopathy after transjugular intrahepatic portosystemic shunt in patients with cirrhosis: clinical, laboratory, psychometric, and electroencephalographic investigations. Hepatology 28:1215–1225CrossRefGoogle Scholar
  27. Ong JP, Aggarwal A, Krieger D et al (2003) Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med 114:188–193CrossRefGoogle Scholar
  28. Oppong KNW, Al-Mardini H, Thick M et al (1997) Oral glutamine challenge in cirrhotics pre- and post-liver transplantation: a psychometric and analyzed EEG study. Hepatology 26:870–876CrossRefGoogle Scholar
  29. Parsons-Smith BG, Summerskill WH, Dawson AM et al (1957) The electroencephalograph in liver disease. Lancet 273:867–871CrossRefGoogle Scholar
  30. Phillips GB, Schwartz R, Gabuzda GJ et al (1952) The syndrome of impending hepatic coma in patients with cirrhosis of the liver given certain nitrogenous substances. N Engl J Med 247:239–246CrossRefGoogle Scholar
  31. Riggio O, Merlli M, Pedretti G et al (1996) Hepatic encephalopathy after transjugular intrahepatic portosystemic shunt. Incidence and risk factors. Dig Dis Sci 41:578–584CrossRefGoogle Scholar
  32. Riggio O, Masini A, Efrati C et al (2005) Pharmacological prophylaxis of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt: a randomized controlled study. J Hepatol 42:674–679CrossRefGoogle Scholar
  33. Riggio O, Angeloni S, Salvatori FM et al (2008) Incidence, natural history, and risk factors of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt with polytetrafluoroethylene-covered stent grafts. Am J Gastroenterol 103:2738–2746CrossRefGoogle Scholar
  34. Riggio O, Ridola L, Lucidi C et al (2010) Emerging issues in the use of transjugular intrahepatic portosystemic shunt (TIPS) for management of portal hypertension: time to update the guidelines? Dig Liver Dis 42:462–467CrossRefGoogle Scholar
  35. Rikkers L, Jenko P, Rudman D et al (1978) Subclinical hepatic encephalopathy: detection, prevalence, and relationship to nitrogen metabolism. Gastroenterology 75:462–469CrossRefGoogle Scholar
  36. Romero-Gómez M, Grande L, Camacho I et al (2002) Altered response to oral glutamine challenge as prognostic factor for overt episodes in patients with minimal hepatic encephalopathy. J Hepatol 37:781–787CrossRefGoogle Scholar
  37. Rossle M, Haag K, Ochs A et al (1994) The transjugular intrahepatic portosystemic stent-shunt procedure for variceal bleeding. N Engl J Med 330:165–171CrossRefGoogle Scholar
  38. Rössle M, Deibert P, Haag K et al (1997) Randomised trial of transjugular-intrahepatic-portosystemic shunt versus endoscopy plus propranolol for prevention of variceal rebleeding. Lancet 349:1043–1049CrossRefGoogle Scholar
  39. Sanyal AJ, Freedman AM, Shiffman ML et al (1994) Portosystemic encephalopathy after transjugular intrahepatic portosystemic shunt: results of a prospective controlled study. Hepatology 20:46–55Google Scholar
  40. Shawcross DL, Wright G, Olde Damink SWM et al (2007) Role of ammonia and inflammation in minimal hepatic encephalopathy. Metab Brain Dis 22:125–138CrossRefGoogle Scholar
  41. Sherlock S, Summerskill WH, White LP et al (1954) Portal- systemic encephalopathy; neurological complications of liver disease. Lancet 267:454–457Google Scholar
  42. Somberg KA, Riegler JL, LaBerge JM et al (1995) Hepatic encephalopathy after transjugular intrahepatic portosystemic shunts: incidence and risk factors. Am J Gastroenterol 90:549–555Google Scholar
  43. Sternberg S (1969) Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci 57:421–457Google Scholar
  44. Van der Rijt CC, Schalm SW, De Groot GH et al (1984) Objective measurement of hepatic encephalopathy by means of automated EEG analysis. Electroencephalogr Clin Neurophysiol 57:423–426CrossRefGoogle Scholar
  45. Vilstrup H, Amodio P, Bajaj J et al (2014) Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the liver. Hepatology 60:715–735CrossRefGoogle Scholar
  46. Watson H, Guevara M, Vilstrup H, Ginès P (2019) Improvement of hyponatremia in cirrhosis is associated with improved complex information processing. J Gastroenterol HepatolGoogle Scholar
  47. Weissenborn K, Ennen JC, Schomerus H et al (2001) Neuropsychological characterization of hepatic encephalopathy. J Hepatol 34:768–773CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Multivisceral Transplant Unit, Department of Surgical and Gastroenterological SciencesUniversity of PadovaPadovaItaly
  2. 2.Department of MedicineUniversity of PadovaPadovaItaly

Personalised recommendations