Advertisement

The role of non-coding RNAs in neuroprotection and angiogenesis following ischemic stroke

  • Elaheh Heydari
  • Masoumeh Alishahi
  • Farhoodeh Ghaedrahmati
  • William Winlow
  • Seyed Esmaeil KhoshnamEmail author
  • Amir AnbiyaieeEmail author
Review Article
  • 145 Downloads

Abstract

Stroke is the leading cause of death and physical disability worldwide. Non-coding RNAs (ncRNAs) are endogenous molecules that play key roles in the pathophysiology and retrieval processes following ischemic stroke. The potential of ncRNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in neuroprotection and angiogenesis highlights their potential as targets for therapeutic intervention. In this review, we document the miRNAs and lncRNAs that have been reported to exert regulatory actions in neuroprotective and angiogenic processes through different mechanisms involving their interaction with target coding genes. We believe that exploration of the expression profiles and the possible functions of ncRNAs during the recovery processes will help comprehension of the molecular mechanisms responsible for neuroprotection and angiogenesis, and may also contribute to find biomarkers and targets for future stroke intervention.

Keywords

Non-coding RNAs Ischemic Stroke Neuroprotection Angiogenesis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial/ non-commercial or financial/ non-financial relationships that could be construed as a potential conflict of interest.

References

  1. Aksoy-Aksel A, Zampa F, Schratt G (2014) MicroRNAs and synaptic plasticity—a mutual relationship. Philos Trans R Soc B 369(1652):20130515CrossRefGoogle Scholar
  2. Aliaga E, Silhol M, Bonneau N, Maurice T, Arancibia S, Tapia-Arancibia L (2010) Dual response of BDNF to sublethal concentrations of β-amyloid peptides in cultured cortical neurons. Neurobiol Dis 37(1):208–217CrossRefPubMedGoogle Scholar
  3. Alishahi, M., Farzaneh, M., Ghaedrahmati, F., Nejabatdoust, A., Sarkaki, A., & Khoshnam, S. E. (2019a). NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. Int J Stroke, 1747493019841242.Google Scholar
  4. Alishahi M, Ghaedrahmati F, Kolagar TA, Winlow W, Nikkar N, Farzaneh M, Khoshnam SE (2019b) Long non-coding RNAs and cell death following ischemic stroke. Metab Brain Dis:1–9Google Scholar
  5. Arenillas JF, Sobrino T, Castillo J, Dávalos A (2007) The role of angiogenesis in damage and recovery from ischemic stroke. Curr Treat Options Cardiovasc Med 9(3):205–212CrossRefPubMedGoogle Scholar
  6. Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R et al (2018) Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood–brain barrier integrity. J Neurosci 38(1):32–50PubMedPubMedCentralGoogle Scholar
  7. Bak M, Silahtaroglu A, Møller M, Christensen M, Rath MF, Skryabin B et al (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14(3):432–444CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bake S, Selvamani A, Cherry J, Sohrabji F (2014) Blood brain barrier and neuroinflammation are critical targets of IGF-1-mediated neuroprotection in stroke for middle-aged female rats. PLoS One 9(3):e91427CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bao M-H, Szeto V, Yang BB, Zhu S-Z, Sun H-S, Feng Z-P (2018) Long non-coding RNAs in ischemic stroke. Cell Death Dis 9(3):281CrossRefPubMedPubMedCentralGoogle Scholar
  10. Beal CC (2010) Gender and stroke symptoms: a review of the current literature. J Neurosci Nurs 42(2):80–87CrossRefPubMedGoogle Scholar
  11. Bell JD, Cho J-E, Giffard RG (2017) MicroRNA changes in preconditioning-induced neuroprotection. Transl Stroke Res 8(6):585–596CrossRefPubMedPubMedCentralGoogle Scholar
  12. Berezikov E, Chung W-J, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bhattarai S, Pontarelli F, Prendergast E, Dharap A (2017) Discovery of novel stroke-responsive lncRNAs in the mouse cortex using genome-wide RNA-seq. Neurobiol Dis 108:204–212CrossRefPubMedGoogle Scholar
  14. Broadbent NJ, Squire LR, Clark RE (2004) Spatial memory, recognition memory, and the hippocampus. Proc Natl Acad Sci U S A 101(40):14515–14520CrossRefPubMedPubMedCentralGoogle Scholar
  15. Buisson A, Nicole O, Docagne F, Sartelet H, Mackenzie ET, Vivien D (1998) Up-regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor β1. FASEB J 12(15):1683–1691CrossRefPubMedGoogle Scholar
  16. Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL et al (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341(6147):789–792CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen Z, Lai T-C, Jan Y-H, Lin F-M, Wang W-C, Xiao H et al (2013) Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J Clin Invest 123(3):1057–1067CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen Q, Xu J, Li L, Li H, Mao S, Zhang F et al (2014) MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis 5(3):e1132CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chen S, Wang M, Yang H, Mao L, He Q, Jin H et al (2017) LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochem Biophys Res Commun 485(1):167–173CrossRefPubMedGoogle Scholar
  21. Chen, R., Xu, X., Huang, L., Zhong, W., & Cui, L. (2019). The regulatory role of Long Noncoding RNAs in different brain cell types involved in ischemic stroke Frontiers in Molecular Neuroscience, 12.Google Scholar
  22. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cheng L-C, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–408CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chi W, Meng F, Li Y, Li P, Wang G, Cheng H et al (2014) Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Res 1592:22–33CrossRefPubMedGoogle Scholar
  25. Chivet, M., Javalet, C., Hemming, F., Pernet-Gallay, K., Laulagnier, K., Fraboulet, S., & Sadoul, R. (2013). Exosomes as a novel way of interneuronal communication. In: Portland Press Limited.Google Scholar
  26. Christensen M, Schratt GM (2009) microRNA involvement in developmental and functional aspects of the nervous system and in neurological diseases. Neurosci Lett 466(2):55–62CrossRefPubMedGoogle Scholar
  27. Conaco C, Otto S, Han J-J, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci 103(7):2422–2427CrossRefPubMedGoogle Scholar
  28. Crosby ME, Devlin CM, Glazer PM, Calin GA, Ivan M (2009) Emerging roles of microRNAs in the molecular responses to hypoxia. Curr Pharm Des 15(33):3861–3866CrossRefPubMedGoogle Scholar
  29. Das A, Samidurai A, Salloum FN (2018) Deciphering non-coding RNAs in cardiovascular health and disease. Front Cardiovasc Med 5:73CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dharap, A., & Vemuganti, R. (2017). Noncoding RNAs and Stroke. In Primer on Cerebrovascular Diseases (Second Edition) (pp. 276-279): Elsevier.Google Scholar
  31. Dharap A, Bowen K, Place R, Li L-C, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29(4):675–687CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dharap A, Nakka VP, Vemuganti R (2012a) Effect of focal ischemia on long noncoding RNAs. Stroke 43(10):2800–2802CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dharap, A., Nakka, V. P., & Vemuganti, R. (2012b). Effect of focal ischemia on long noncoding RNAs. Stroke, STROKEAHA 112.669465.Google Scholar
  34. Doeppner TR, Kaltwasser B, Sanchez-Mendoza EH, Caglayan AB, Bähr M, Hermann DM (2017) Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3β inhibition-independent pathways. J Cereb Blood Flow Metab 37(3):914–926CrossRefPubMedGoogle Scholar
  35. Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132(21):4645–4652CrossRefPubMedGoogle Scholar
  36. Dykstra-Aiello C, Jickling GC, Ander BP, Shroff N, Zhan X, Liu D et al (2016) Altered expression of long noncoding RNAs in blood after ischemic stroke and proximity to putative stroke risk loci. Stroke 47(12):2896–2903CrossRefPubMedPubMedCentralGoogle Scholar
  37. Edbauer D, Neilson JR, Foster KA, Wang C-F, Seeburg DP, Batterton MN et al (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65(3):373–384CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ergul A, Alhusban A, Fagan SC (2012) Angiogenesis: a harmonized target for recovery after stroke. Stroke 43(8):2270–2274CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fan Y, Ding S, Sun Y, Zhao B, Pan Y, Wan J (2018) MiR-377 Regulates Inflammation and Angiogenesis in Rats After Cerebral Ischemic Injury. J Cell Biochem 119(1):327–337CrossRefPubMedGoogle Scholar
  40. Farzaneh M, Attari F, Khoshnam SE (2017) Concise review: LIN28/let-7 signaling, a critical double-negative feedback loop during pluripotency, reprogramming, and Tumorigenicity. Cell Rep 19(5):289–293CrossRefGoogle Scholar
  41. Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE (2019) The Expression and Functional Roles of miRNAs in Embryonic and Lineage-Specific Stem Cells. Curr Stem Cell Res Ther 14(3):278–289CrossRefPubMedGoogle Scholar
  42. Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F (2010) microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther 125(1):92–104CrossRefPubMedGoogle Scholar
  43. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 102(50):18081–18086CrossRefPubMedPubMedCentralGoogle Scholar
  44. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102CrossRefPubMedGoogle Scholar
  45. Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW, Kim TK et al (2009) Mef2-mediated transcription of the miR379–410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J 28(6):697–710CrossRefPubMedPubMedCentralGoogle Scholar
  46. Frühbeis C, Fröhlich D, Kuo WP, Krämer-Albers E-M (2013) Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 7:182CrossRefPubMedPubMedCentralGoogle Scholar
  47. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54(2):271–284CrossRefPubMedGoogle Scholar
  48. Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470(7333):284CrossRefPubMedPubMedCentralGoogle Scholar
  49. Grilli M, Barbieri I, Basudev H, Brusa R, Casati C, Lozza G, Ongini E (2000) Interleukin-10 modulates neuronal threshold of vulnerability to ischaemic damage. Eur J Neurosci 12(7):2265–2272CrossRefPubMedGoogle Scholar
  50. Guo D, Ma J, Yan L, Li T, Li Z, Han X, Shui S (2017) Down-regulation of Lncrna MALAT1 attenuates neuronal cell death through suppressing Beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. Cell Physiol Biochem 43(1):182–194CrossRefPubMedGoogle Scholar
  51. Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027CrossRefPubMedPubMedCentralGoogle Scholar
  52. Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A 109(46):18962–18967.  https://doi.org/10.1073/pnas.1121288109 CrossRefPubMedPubMedCentralGoogle Scholar
  53. He QW, Li Q, Jin HJ, Zhi F, Suraj B, Zhu YY et al (2016) Mir-150 regulates poststroke cerebral angiogenesis via vascular endothelial growth factor in rats. CNS Neurosci Ther 22(6):507–517CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hu W, Alvarez-Dominguez JR, Lodish HF (2012) Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 13(11):971–983CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hu X, De Silva TM, Chen J, Faraci FM (2017) Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ Res 120(3):449–471CrossRefPubMedPubMedCentralGoogle Scholar
  56. Huang W, Liu X, Cao J, Meng F, Li M, Chen B, Zhang J (2015) miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling. J Mol Neurosci 55(4):821–829CrossRefPubMedGoogle Scholar
  57. Huang L, Ma Q, Li Y, Li B, Zhang L (2018) Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Exp Neurol 300:41–50.  https://doi.org/10.1016/j.expneurol.2017.10.024 CrossRefPubMedGoogle Scholar
  58. Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838CrossRefPubMedGoogle Scholar
  59. Iadecola C, Anrather J (2011a) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808CrossRefPubMedPubMedCentralGoogle Scholar
  60. Iadecola C, Anrather J (2011b) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14(11):1363–1368CrossRefPubMedPubMedCentralGoogle Scholar
  61. Iyengar BR, Choudhary A, Sarangdhar MA, Venkatesh K, Gadgil CJ, Pillai B (2014) Non-coding RNA interact to regulate neuronal development and function. Front Cell Neurosci 8:47CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jadhav SP, Kamath SP, Choolani M, Lu J, Dheen ST (2014) microRNA-200b modulates microglia-mediated neuroinflammation via the cJun/MAPK pathway. J Neurochem 130(3):388–401CrossRefPubMedGoogle Scholar
  63. Jiang Y, Wei N, Lu T, Zhu J, Xu G, Liu X (2011a) Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats. Neuroscience 172:398–405CrossRefPubMedGoogle Scholar
  64. Jiang Y, Zhu J, Xu G, Liu X (2011b) Intranasal delivery of stem cells to the brain. Expert Opin Drug Deliv 8(5):623–632CrossRefPubMedGoogle Scholar
  65. Jiang Y, Li L, Tan X, Liu B, Zhang Y, Li C (2015) miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. J Neurochem 134(1):173–181CrossRefPubMedGoogle Scholar
  66. Jovičić A, Roshan R, Moisoi N, Pradervand S, Moser R, Pillai B, Luthi-Carter R (2013) Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci 33(12):5127–5137CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kabadi S, Faden A (2014) Neuroprotective strategies for traumatic brain injury: improving clinical translation. Int J Mol Sci 15(1):1216–1236CrossRefPubMedPubMedCentralGoogle Scholar
  68. Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG et al (2011) In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147(2):382–395CrossRefPubMedPubMedCentralGoogle Scholar
  69. Khoshnam SE, Sarkaki A, Khorsandi L, Winlow W, Badavi M, Moghaddam HF, Farbooda Y (2017a) Vanillic acid attenuates effects of transient bilateral common carotid occlusion and reperfusion in rats. Biomed Pharmacother 96:667–674CrossRefPubMedGoogle Scholar
  70. Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M (2017b) Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. J Stroke 19(2):166CrossRefPubMedPubMedCentralGoogle Scholar
  71. Khoshnam SE, Winlow W, Farzaneh M (2017c) The interplay of MicroRNAs in the inflammatory mechanisms following ischemic stroke. J Neuropathol Exp Neurol 76(7):548–561CrossRefPubMedGoogle Scholar
  72. Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF (2017d) Pathogenic mechanisms following ischemic stroke. Neurol Sci 38(7):1167–1186CrossRefPubMedGoogle Scholar
  73. Khoshnam, S. E., Farbood, Y., Moghaddam, H. F., Sarkaki, A., Badavi, M., & Khorsandi, L. (2018a). Vanillic acid attenuates cerebral hyperemia, blood-brain barrier disruption and anxiety-like behaviors in rats following transient bilateral common carotid occlusion and reperfusion. Metab Brain Dis, 1-9Google Scholar
  74. Khoshnam SE, Sarkaki A, Rashno M, Farbood Y (2018b) Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid. Life Sci Google Scholar
  75. Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest–and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3(107):ra8–ra8PubMedPubMedCentralGoogle Scholar
  76. Kishida T, Asada H, Gojo S, Ohashi S, Shin-Ya M, Yasutomi K et al (2004) Sequence-specific gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA. J Gene Med 6(1):105–110CrossRefPubMedGoogle Scholar
  77. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27(5):1859–1867CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kumar G, Goyal MK, Sahota PK, Jain R (2010) Penumbra, the basis of neuroimaging in acute stroke treatment: current evidence. J Neurol Sci 288(1):13–24CrossRefPubMedGoogle Scholar
  80. Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14(23):2162–2167CrossRefPubMedGoogle Scholar
  81. Lapchak PA, Chapman DF, Zivin JA (2001) Pharmacological Effects of the Spin Trap Agents Nt-Butyl-Phenylnitrone (PBN) and 2, 2, 6, 6-Tetramethylpiperidine-N-Oxyl (TEMPO) in a Rabbit Thromboembolic Stroke Model Combination Studies With the Thrombolytic Tissue Plasminogen Activator. Stroke 32(1):147–153CrossRefPubMedGoogle Scholar
  82. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 32(1)Google Scholar
  83. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8):622–638CrossRefPubMedGoogle Scholar
  84. Li Y, Liu Y, Wang Z, Hou H, Lin Y, Jiang Y (2013) MicroRNA: not far from clinical application in ischemic stroke. Stroke 2013:7.  https://doi.org/10.1155/2013/858945
  85. Li Y, Mao L, Gao Y, Baral S, Zhou Y, Hu B (2015) MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci Rep 5 Google Scholar
  86. Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, Zhang C (2016) An Antagomir to MicroRNA-106b-5p Ameliorates Cerebral Ischemia and Reperfusion Injury in Rats Via Inhibiting Apoptosis and Oxidative Stress. Mol Neurobiol:1–21Google Scholar
  87. Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, Zhang C (2017) An Antagomir to MicroRNA-106b-5p Ameliorates Cerebral Ischemia and Reperfusion Injury in Rats Via Inhibiting Apoptosis and Oxidative Stress. Mol Neurobiol 54(4):2901–2921.  https://doi.org/10.1007/s12035-016-9842-1 CrossRefPubMedGoogle Scholar
  88. Li H, Wu Y, Suo G, Shen F, Zhen Y, Chen X, Lv H (2018) Profiling neuron-autonomous lncRNA changes upon ischemia/reperfusion injury. Biochem Biophys Res Commun 495(1):104–109CrossRefPubMedGoogle Scholar
  89. Liu, P., Zhao, H., Wang, R., Wang, P., Tao, Z., Gao, L., . . . Ji, X. (2014). MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke, STROKEAHA. 114.007482.Google Scholar
  90. Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L et al (2015) MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 46(2):513–519CrossRefPubMedGoogle Scholar
  91. Liu X, Hou L, Huang W, Gao Y, Lv X, Tang J (2016) The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: mediated by miR-181b-12/15-LOX signaling pathway. Front Cell Neurosci 10:201PubMedPubMedCentralGoogle Scholar
  92. Liu C, Zhang C, Yang J, Geng X, Du H, Ji X, Zhao H (2017a) Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget 8(49):86535PubMedPubMedCentralGoogle Scholar
  93. Liu J, Li Q, Zhang K-S, Hu B, Niu X, Zhou S-M et al (2017b) Downregulation of the long non-coding RNA Meg3 promotes angiogenesis after ischemic brain injury by activating notch signaling. Mol Neurobiol 54(10):8179–8190CrossRefPubMedGoogle Scholar
  94. Liu XL, Wang G, Song W, Yang WX, Hua J, Lyu L (2018) microRNA-137 promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke mice by targeting NR4A2 through the Notch pathway. J Cell Physiol 233(7):5255–5266CrossRefPubMedGoogle Scholar
  95. Loohuis NO, Kos A, Martens G, Van Bokhoven H, Kasri NN, Aschrafi A (2012) MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 69(1):89–102CrossRefGoogle Scholar
  96. Lou Y-L, Guo F, Liu F, Gao F-L, Zhang P-Q, Niu X et al (2012) miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem 370(1-2):45–51CrossRefPubMedGoogle Scholar
  97. Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL et al (2010) microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci 107(47):20382–20387CrossRefPubMedGoogle Scholar
  98. Mehta SL, Kim T, Vemuganti R (2015) Long noncoding RNA FosDT promotes ischemic brain injury by interacting with REST-associated chromatin-modifying proteins. J Neurosci 35(50):16443–16449CrossRefPubMedPubMedCentralGoogle Scholar
  99. Mehta, S. L., Pandi, G., & Vemuganti, R. (2017). Circular RNA expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke, STROKEAHA. 117.017469.Google Scholar
  100. Mellios N, Huang H-S, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17(19):3030–3042CrossRefPubMedPubMedCentralGoogle Scholar
  101. Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300CrossRefPubMedGoogle Scholar
  102. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155CrossRefPubMedGoogle Scholar
  103. Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T et al (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114(9):1389–1397CrossRefPubMedGoogle Scholar
  104. Morlando M, Ballarino M, Fatica A (2015) Long non-coding RNAs: new players in hematopoiesis and leukemia. Front Med 2:23CrossRefGoogle Scholar
  105. Morrisey EE (2010) The magic and mystery of miR-21. J Clin Invest 120(11):3817–3819CrossRefPubMedPubMedCentralGoogle Scholar
  106. Neo, W. H., Yap, K., Lee, S. H., Looi, L. S., Khandelia, P., Neo, S. X., . . . Su, I.-h. (2014). MicroRNA miR-124 controls the choice between neuronal and astrocyte differentiation by fine-tuning Ezh2 expression. Journal of Biological Chemistry, jbc. M113. 525493.Google Scholar
  107. Ng SY, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 31(3):522–533CrossRefPubMedGoogle Scholar
  108. Onwuekwe IO, Ezeala-Adikaibe B (2012) Ischemic stroke and neuroprotection. Ann Med Health Sci Res 2(2):186Google Scholar
  109. Pandi G, Nakka VP, Dharap A, Roopra A, Vemuganti R (2013) MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One 8(3):e58039CrossRefPubMedPubMedCentralGoogle Scholar
  110. Park, H.-A., Kubicki, N., Gnyawali, S., Chan, Y. C., Roy, S., Khanna, S., & Sen, C. K. (2011). Natural vitamin E α-tocotrienol protects against ischemic stroke by induction of multidrug resistance-associated protein 1. Stroke, STROKEAHA. 110.608547.Google Scholar
  111. Paschou M, Paraskevopoulou MD, Vlachos IS, Koukouraki P, Hatzigeorgiou AG, Doxakis E (2012) miRNA regulons associated with synaptic function. PLoS One 7(10)):e46189CrossRefPubMedPubMedCentralGoogle Scholar
  112. Patrick DM, Montgomery RL, Qi X, Obad S, Kauppinen S, Hill JA et al (2010) Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest 120(11):3912–3916CrossRefPubMedPubMedCentralGoogle Scholar
  113. Peng Z, Li J, Li Y, Yang X, Feng S, Han S, Li J (2013) Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1. J Neurosci Res 91(10):1349–1362CrossRefPubMedGoogle Scholar
  114. Petri R, Malmevik J, Fasching L, Åkerblom M, Jakobsson J (2014) miRNAs in brain development. Exp Cell Res 321(1):84–89CrossRefPubMedGoogle Scholar
  115. Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13(8):528CrossRefPubMedPubMedCentralGoogle Scholar
  116. Qureshi IA, Mehler MF (2013) Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics 10(4):632–646CrossRefPubMedPubMedCentralGoogle Scholar
  117. Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35CrossRefPubMedGoogle Scholar
  118. Ren W, Yang X (2018) Pathophysiology of Long Non-coding RNAs in Ischemic Stroke. Front Mol Neurosci 11:96CrossRefPubMedPubMedCentralGoogle Scholar
  119. Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics 43(10):521–528CrossRefPubMedGoogle Scholar
  120. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83CrossRefPubMedPubMedCentralGoogle Scholar
  121. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358CrossRefPubMedPubMedCentralGoogle Scholar
  122. Saugstad JA (2010) MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab 30(9):1564–1576CrossRefPubMedPubMedCentralGoogle Scholar
  123. Schaukowitch K, Kim T-K (2014) Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience 264:25–38CrossRefPubMedGoogle Scholar
  124. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283CrossRefPubMedGoogle Scholar
  125. Sharma P, Schiapparelli L, Cline HT (2013) Exosomes function in cell–cell communication during brain circuit development. Curr Opin Neurobiol 23(6):997–1004CrossRefPubMedGoogle Scholar
  126. Shen F, Fan Y, Su H, Zhu Y, Chen Y, Liu W et al (2008) Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice. Gene Ther 15(1):30–39CrossRefPubMedGoogle Scholar
  127. Stary CM, Xu L, Sun X, Ouyang Y-B, White RE, Leong J et al (2015) MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin. Stroke 46(2):551–556CrossRefPubMedPubMedCentralGoogle Scholar
  128. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100(8):1164–1173CrossRefPubMedGoogle Scholar
  129. Sun H-S, Feng Z-P (2013) Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia. Acta Pharmacol Sin 34(1):24CrossRefPubMedGoogle Scholar
  130. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111(12):1843–1851CrossRefPubMedPubMedCentralGoogle Scholar
  131. Sun H-S, Doucette TA, Liu Y, Fang Y, Teves L, Aarts M et al (2008) Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke 39(9):2544–2553CrossRefPubMedGoogle Scholar
  132. Sun H-S, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H et al (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12(10):1300CrossRefPubMedPubMedCentralGoogle Scholar
  133. Sun J, Tao S, Liu L, Guo D, Xia Z, Huang M (2016) miR-140-5p regulates angiogenesis following ischemic stroke by targeting VEGFA. Mol Med Rep 13(5):4499–4505CrossRefPubMedGoogle Scholar
  134. Sun H, Zhong D, Jin J, Liu Q, Wang H, Li G (2018) Upregulation of miR-215 exerts neuroprotection effects against ischemic injury via negative regulation of Act1/IL-17RA signaling. Neurosci Lett 662:233–241CrossRefPubMedGoogle Scholar
  135. Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, Jeyaseelan K (2009) Expression profile of MicroRNAs in young stroke patients. PLoS One 4(11):e7689CrossRefPubMedPubMedCentralGoogle Scholar
  136. Tan JR, Koo YX, Kaur P, Liu F, Armugam A, Wong PT-H, Jeyaseelan K (2011) microRNAs in stroke pathogenesis. Curr Mol Med 11(2):76–92CrossRefPubMedGoogle Scholar
  137. Tan Z, Li X, Turner RC, Logsdon AF, Lucke-Wold B, DiPasquale K et al (2014) Combination treatment of r-tPA and an optimized human apyrase reduces mortality rate and hemorrhagic transformation 6 h after ischemic stroke in aged female rats. Eur J Pharmacol 738:368–373CrossRefPubMedPubMedCentralGoogle Scholar
  138. Tao Z, Zhao H, Wang R, Liu P, Yan F, Zhang C et al (2015) Neuroprotective effect of microRNA-99a against focal cerebral ischemia–reperfusion injury in mice. J Neurol Sci 355(1):113–119CrossRefPubMedGoogle Scholar
  139. Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA (2006) Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β: the role of T regulatory cells. Immunology 117(4):433–442CrossRefPubMedPubMedCentralGoogle Scholar
  140. Thangavelu K, Kannan R, Kumar NS, Rethish E, Sabitha S, Sayeeganesh N (2012) Significance of localization of mandibular foramen in an inferior alveolar nerve block. J Nat Sci Biol Med 3(2):156CrossRefPubMedPubMedCentralGoogle Scholar
  141. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938CrossRefPubMedPubMedCentralGoogle Scholar
  142. Vakili A, Mojarrad S, Akhavan MM, Rashidy-Pour A (2011) Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats. Brain Res 1377:119–125CrossRefPubMedGoogle Scholar
  143. Van der Worp H, Kappelle L, Algra A, Bär P, Orgogozo J, Ringelstein E et al (2002) The effect of tirilazad mesylate on infarct volume of patients with acute ischemic stroke. Neurology 58(1):133–135CrossRefPubMedGoogle Scholar
  144. Varga ZV, Kupai K, Szűcs G, Gáspár R, Pálóczi J, Faragó N et al (2013) MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol 62:111–121CrossRefPubMedGoogle Scholar
  145. Vartanian KB, Mitchell HD, Stevens SL, Conrad VK, McDermott JE, Stenzel-Poore MP (2015) CpG preconditioning regulates miRNA expression that modulates genomic reprogramming associated with neuroprotection against ischemic injury. J Cereb Blood Flow Metab 35(2):257–266CrossRefPubMedGoogle Scholar
  146. Velayatzadeh, M., ASKARY, S. A., Beheshti, M., Mahjob, S., & Hoseini, M. (2014). Measurement of heavy metals (HG, CD, SN, ZN, NI, FE) in canned tuna fish product in central cities, IRAN.Google Scholar
  147. Vemuganti R (2013) All’s well that transcribes well: non-coding RNAs and post-stroke brain damage. Neurochem Int 63(5):438–449CrossRefPubMedPubMedCentralGoogle Scholar
  148. Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z et al (2017) Long Noncoding RNA H19 Promotes Neuroinflammation in Ischemic Stroke by Driving Histone Deacetylase 1–Dependent M1 Microglial Polarization. Stroke 48(8):2211–2221CrossRefPubMedGoogle Scholar
  149. Wang, S.-W., Liu, Z., & Shi, Z.-S. (2018). Non-Coding RNA in Acute Ischemic Stroke: Mechanisms, Biomarkers and Therapeutic Targets Cell transplantation, 0963689718806818.Google Scholar
  150. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504CrossRefPubMedPubMedCentralGoogle Scholar
  151. Wu F, Yang Z, Li G (2009) Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun 386(4):549–553CrossRefPubMedPubMedCentralGoogle Scholar
  152. Wu Z, Wu P, Zuo X, Yu N, Qin Y, Xu Q et al (2017) LncRNA-N1LR enhances neuroprotection against ischemic stroke probably by inhibiting p53 phosphorylation. Mol Neurobiol 54(10):7670–7685CrossRefPubMedGoogle Scholar
  153. Xin H, Katakowski M, Wang F, Qian J-Y, Liu XS, Ali MM et al (2017) MicroRNA-17–92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 48(3):747–753CrossRefPubMedPubMedCentralGoogle Scholar
  154. Xu L-J, Ouyang Y-B, Xiong X, Stary CM, Giffard RG (2015) Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia. Exp Neurol 264:1–7CrossRefPubMedGoogle Scholar
  155. Yan H, Yuan J, Gao L, Rao J, Hu J (2016) Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience 337:191–199CrossRefPubMedGoogle Scholar
  156. Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, Fang G (2012) Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J 279(17):3159–3165CrossRefPubMedGoogle Scholar
  157. Ye, J., Das, S., Roy, A., Wei, W., Huang, H., Lorenz-Guertin, J. M., . . . Sun, D. (2018). Ischemic Injury-Induced CaMKIIδ and CaMKIIγ Confer Neuroprotection Through the NF-κB Signaling Pathway. Molecular neurobiology, 1-14.Google Scholar
  158. Yin K-J, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, Chen YE (2010) miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 38(1):17–26CrossRefPubMedPubMedCentralGoogle Scholar
  159. Yin K-J, Olsen K, Hamblin M, Zhang J, Schwendeman SP, Chen YE (2012) Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia. J Biol Chem 287(32):27055–27064CrossRefPubMedPubMedCentralGoogle Scholar
  160. Yin K-J, Hamblin M, Chen YE (2014) Non-coding RNAs in cerebral endothelial pathophysiology: emerging roles in stroke. Neurochem Int 77:9–16CrossRefPubMedGoogle Scholar
  161. Yin K-J, Hamblin M, Eugene Chen Y (2015) Angiogenesis-regulating microRNAs and ischemic stroke. Curr Vasc Pharmacol 13(3):352–365CrossRefPubMedPubMedCentralGoogle Scholar
  162. Yoon J-H, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S et al (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47(4):648–655CrossRefPubMedPubMedCentralGoogle Scholar
  163. Yuan L, Zhang J, Chen YE, Yin K-J (2015) Long non-coding RNAs mediate cerebrovascular endothelial pathologies in ischemic stroke. Stroke 46(suppl_1):A72–A72Google Scholar
  164. Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y et al (2011) MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci (Elite Ed) 3:1265–1272Google Scholar
  165. Zeng L, He X, Wang Y, Tang Y, Zheng C, Cai H et al (2014) MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther 21(1):37CrossRefPubMedGoogle Scholar
  166. Zhan R, Xu K, Pan J, Xu Q, Xu S, Shen J (2017) Long noncoding RNA MEG3 mediated angiogenesis after cerebral infarction through regulating p53/NOX4 axis. Biochem Biophys Res Commun 490(3):700–706CrossRefPubMedGoogle Scholar
  167. Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8(5):491–500CrossRefPubMedPubMedCentralGoogle Scholar
  168. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C et al (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106(7):829–838CrossRefPubMedPubMedCentralGoogle Scholar
  169. Zhang H, Shykind B, Sun T (2013a) Approaches to manipulating microRNAs in neurogenesis. Front Neurosci 6:196CrossRefPubMedPubMedCentralGoogle Scholar
  170. Zhang Y, Wang Z, Gemeinhart RA (2013b) Progress in microRNA delivery. J Control Release 172(3):962–974CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zhang L, Li YJ, Wu XY, Hong Z, Wei WS (2015) MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4. J Neurochem 132(6):713–723CrossRefPubMedPubMedCentralGoogle Scholar
  172. Zhang J, Yuan L, Zhang X, Hamblin M, Zhu T, Meng F et al (2016) Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol 277:162–170CrossRefPubMedGoogle Scholar
  173. Zhang B, Wang D, Ji T-F, Shi L, Yu J-L (2017a) Overexpression of lncRNA ANRIL up-regulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model. Oncotarget 8(10):17347PubMedGoogle Scholar
  174. Zhang X, Tang X, Liu K, Hamblin MH, Yin K-J (2017b) Long non-coding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci:3389–3316Google Scholar
  175. Zhang, X., Hamblin, M. H., & Yin, K.-J. (2018a). Noncoding RNAs and Stroke. Neuroscientist, 1073858418769556.Google Scholar
  176. Zhang X, Tang X, Hamblin MH, Yin KJ (2018b) Long Non-Coding RNA Malat1 Regulates Angiogenesis in Hindlimb Ischemia. Int J Mol Sci 19(6).  https://doi.org/10.3390/ijms19061723
  177. Zhao C, Sun G, Ye P, Li S, Shi Y (2013a) MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis. Sci Rep 3:1329CrossRefPubMedPubMedCentralGoogle Scholar
  178. Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z et al (2013b) MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 44(6):1706–1713CrossRefPubMedGoogle Scholar
  179. Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J et al (2014) MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 1592:65–72CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyTehran North Branch, Islamic Azad UniversityTehranIran
  2. 2.Immunology Department, Medical SchoolShiraz University of Medical SciencesShirazIran
  3. 3.Dipartimento di BiologiaUniversità degli Studi di Napoli, Federico IINapoliItaly
  4. 4.Honorary Research Fellow, Institute of Ageing and Chronic DiseasesUniversity of LiverpoolLiverpoolUK
  5. 5.Physiology Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
  6. 6.Department of Obstetrics & Gynecology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran

Personalised recommendations