Advertisement

Disability in multiple sclerosis is associated with age and inflammatory, metabolic and oxidative/nitrosative stress biomarkers: results of multivariate and machine learning procedures

  • Tamires Flauzino
  • Andrea Name Colado Simão
  • Wildea Lice de Carvalho Jennings Pereira
  • Daniela Frizon Alfieri
  • Sayonara Rangel Oliveira
  • Ana Paula Kallaur
  • Marcell Alysson Batisti Lozovoy
  • Damacio Ramón Kaimen-Maciel
  • Michael Maes
  • Edna Maria Vissoci ReicheEmail author
Original Article

Abstract

The aim of this study was to evaluate the immune-inflammatory, metabolic, and nitro-oxidative stress (IM&NO) biomarkers as predictors of disability in multiple sclerosis (MS) patients. A total of 122 patients with MS were included; their disability was evaluated using the Expanded Disability Status Scale (EDSS) and IM&NO biomarkers were evaluated in peripheral blood samples. Patients with EDSS ≥3 were older and showed higher homocysteine, uric acid, advanced oxidized protein products (AOPP) and low-density lipoprotein (LDL)-cholesterol and higher rate of metabolic syndrome (MetS), while high-density lipoprotein (HDL)-cholesterol was lower than in patients with EDSS <3; 84.6% of all patients were correctly classified in these EDSS subgroups. We found that 36.3% of the variance in EDSS score was explained by age, Th17/T regulatory (Treg) and LDL/HDL ratios and homocysteine (all positively related) and body mass index (BMI) (inversely related). After adjusting for MS treatment modalities, the effects of the LDL/HDL and zTh17/Treg ratios, homocysteine and age on disability remained, whilst BMI was no longer significant. Moreover, carbonyl proteins were associated with increased disability. In conclusion, the results showed that an inflammatory Th17 profile coupled with age and increased carbonyl proteins were the most important variables associated with high disability followed at a distance by homocysteine, MetS and LDL/HDL ratio. These data underscore that IM&NO pathways play a key role in increased disability in MS patient and may be possible new targets for the treatment of these patients. Moreover, a panel of these laboratory biomarkers may be used to predict the disability in MS.

Keywords

Multiple sclerosis Disability Inflammation Oxidative stress Homocysteine Biomarkers 

Notes

Author’s contributions

Conception and research design: Edna Maria Vissoci Reiche and Andrea Name Colado Simão; Manuscript writing and discussion of results: Edna Maria Vissoci Reiche, Andrea Name Colado Simão; Tamires Flauzino; Data collection: Damacio Ramón Kaimen-Maciel, Wildea Lice de Carvalho Jennings Pereira, Tamires Flauzino, Daniela Frizon Alfieri, Ana Paula Kallaur, and Sayonara Rangel Oliveira, which contributed equally; Laboratory analysis: Tamires Flauzino, Daniela Frizon Alfieri, Marcell Alysson Batisti Lozovoy; Statistical analysis: Andrea Name Colado Simão, Michael Maes. All authors have read and approved the final manuscript.

Financial support

This study was partially and financially supported by Novartis Biosciences S.A for the development of the research according to the Researcher’s Initiative Study CFTY720DBR07T. The authors do not receive any reimbursement or financial benefits and declare that they have no competing interests. Novartis Biosciences S.A. played no role in the design, methods, data management or analysis or in the decision to publish. The study was also supported by grants from Coordination for the Improvement of Higher Level of Education Personnel (CAPES) of Brazilian Ministry of Education; Institutional Program for Scientific Initiation Scholarship (PIBIC) of the National Council for Scientific and Technological Development (CNPq).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The protocol was approved by the Institutional Research Ethics Committees of University of Londrina, Paraná, Brazil (CAAE: 22290913.9.0000.5231) and all of the individuals invited were informed in detail about the research and gave written Informed Consent.

References

  1. Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR (2001) Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103:373–383.  https://doi.org/10.1016/S0306-4522(00)00580-7 CrossRefGoogle Scholar
  2. Altman DG, Royston P (2006) The cost of dichotomising continuous variables. BMJ 332(7549):1080CrossRefGoogle Scholar
  3. American Diabetes Association (2014) Standards of medical care in diabetes--2014. Diabetes Care 37(Suppl 1):S14–S80.  https://doi.org/10.2337/dc14-S014 CrossRefGoogle Scholar
  4. Bizzozero OA, DeJesus G, Callahan K, Pastuszyn A (2005) Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. J Neurosci Res 81:687–695.  https://doi.org/10.1002/jnr.20587 CrossRefGoogle Scholar
  5. Bonetti F, Brombo G, Zuliani G (2016) The relationship between hyperhomocysteinemia and neurodegeneration. Neurodegener Dis Manag 6:133–145.  https://doi.org/10.2217/nmt-2015-0008 CrossRefGoogle Scholar
  6. Chataway J, Schuerer N, Alsanousi A, et al (2013) THE MS-STAT TRIAL: high dose simvastatin slows brain atrophy and delays disability in secondary progressive multiple sclerosis: a phase II placebo-controlled trial. Neurology 80:(7 Supplement) PL02.001Google Scholar
  7. Chataway J, Schuerer N, Alsanousi A, Chan D, MacManus D, Hunter K, Anderson V, Bangham CRM, Clegg S, Nielsen C, Fox NC, Wilkie D, Nicholas JM, Calder VL, Greenwood J, Frost C, Nicholas R (2014) Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet 383:2213–2221.  https://doi.org/10.1016/S0140-6736(13)62242-4 CrossRefGoogle Scholar
  8. Confavreux C, Vukusic S (2006) Age at disability milestones in multiple sclerosis. Brain 129:595–605.  https://doi.org/10.1093/brain/awh714 CrossRefGoogle Scholar
  9. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176.  https://doi.org/10.1016/S1471-4914(03)00031-5 CrossRefGoogle Scholar
  10. Das Sarma J, Ciric B, Marek R et al (2009) Functional interleukin-17 receptor a is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J Neuroinflammation 6:1–12.  https://doi.org/10.1186/1742-2094-6-14 CrossRefGoogle Scholar
  11. Dichi I, Breganó JW, Simão ANC, Cecchini R (2014) Role of oxidative stress in chronic diseases. CRC Press, Boca RatonCrossRefGoogle Scholar
  12. Faeh D, Chiolero A, Paccaud F (2006) Homocysteine as a risk factor for cardiovascular disease: should we (still) worry about? Swiss Med Wkly 136:745–756 Google Scholar
  13. Ferrante RJ, Browne SE, Shinobu LA et al (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69:2064–2074.  https://doi.org/10.1046/j.1471-4159.1997.69052064.x CrossRefGoogle Scholar
  14. Ferreira KPZ, Oliveira SR, Kallaur AP, Kaimen-Maciel DR, Lozovoy MAB, de Almeida ERD, Morimoto HK, Mezzaroba L, Dichi I, Reiche EMV, Simão ANC (2017) Disease progression and oxidative stress are associated with higher serum ferritin levels in patients with multiple sclerosis. J Neurol Sci 373:236–241.  https://doi.org/10.1016/j.jns.2016.12.039 CrossRefGoogle Scholar
  15. Ferretti G, Bacchetti T, Principi F, di Ludovico F, Viti B, Angeleri VA, Danni M, Provinciali L (2005) Increased levels of lipid hydroperoxides in plasma of patients with multiple sclerosis: a relationship with paraoxonase activity. Mult Scler 11:677–682.  https://doi.org/10.1191/1352458505ms1240oa CrossRefGoogle Scholar
  16. Floor E, Wetzel MG (2002) Increased protein oxidation in human substantia Nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved Dinitrophenylhydrazine assay. J Neurochem 70:268–275.  https://doi.org/10.1046/j.1471-4159.1998.70010268.x CrossRefGoogle Scholar
  17. Gonzalez Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10:93–100CrossRefGoogle Scholar
  18. Graber JJ, Ford D, Zhan M et al (2007) Cytokine changes during interferon-beta therapy in multiple sclerosis: correlations with interferon dose and MRI response. J Neuroimmunol 185:168–174.  https://doi.org/10.1016/j.jneuroim.2007.01.011 CrossRefGoogle Scholar
  19. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112:2735–2752.  https://doi.org/10.1161/CIRCULATIONAHA.105.169404 CrossRefGoogle Scholar
  20. Gryszczyńska B, Formanowicz D, Budzyń M, Wanic-Kossowska M, Pawliczak E, Formanowicz P, Majewski W, Strzyżewski KW, Kasprzak MP, Iskra M (2017) Advanced oxidation protein products and Carbonylated proteins as biomarkers of oxidative stress in selected atherosclerosis-mediated diseases. Biomed Res Int 2017:4975264Google Scholar
  21. Guzel I, Mungan S, Oztekin ZN, Ak F (2016) Is there an association between the expanded disability status scale and inflammatory markers in multiple sclerosis? J Chinese Med Assoc 79:54–57.  https://doi.org/10.1016/j.jcma.2015.08.010 CrossRefGoogle Scholar
  22. Haas J, Hug A, Viehöver A, Fritzsching B, Falk CS, Filser A, Vetter T, Milkova L, Korporal M, Fritz B, Storch-Hagenlocher B, Krammer PH, Suri-Payer E, Wildemann B (2005) Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 35:3343–3352.  https://doi.org/10.1002/eji.200526065 CrossRefGoogle Scholar
  23. Hemmer B, Kerschensteiner M, Korn T (2015) Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 14:406–419Google Scholar
  24. Ho PI, Ortiz D, Rogers E, Shea TB (2002) Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J Neurosci Res 70:694–702.  https://doi.org/10.1002/jnr.10416 CrossRefGoogle Scholar
  25. Huang Y, Wu Z, Riwanto M, Gao S, Levison BS, Gu X, Fu X, Wagner MA, Besler C, Gerstenecker G, Zhang R, Li XM, DiDonato AJ, Gogonea V, Tang WHW, Smith JD, Plow EF, Fox PL, Shih DM, Lusis AJ, Fisher EA, DiDonato JA, Landmesser U, Hazen SL (2013) Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J Clin Invest 123(9):3815–3828CrossRefGoogle Scholar
  26. IBGE. Brazilian Institute of Geography and Statistics (2011) Characteristics of the population and households: results of the universe. https://ww2.ibge.gov.br/english/estatistica/populacao/censo2010/caracteristicas_da_populacao/default_caracteristicas_da_populacao.shtm. Accessed 3 Jul 2018
  27. Imitola J, Chitnis T, Khoury SJ (2005) Cytokines in multiple sclerosis: from bench to bedside. Pharmacol Ther 106:163–177.  https://doi.org/10.1016/j.pharmthera.2004.11.007 CrossRefGoogle Scholar
  28. Kallaur AP, Lopes J, Oliveira SR, Simão ANC, Reiche EMV, de Almeida ERD, Morimoto HK, de Pereira WLCJ, Alfieri DF, Borelli SD, Kaimen-Maciel DR, Maes M (2016) Immune-inflammatory and oxidative and Nitrosative stress biomarkers of depression symptoms in subjects with multiple sclerosis: increased peripheral inflammation but less acute Neuroinflammation. Mol Neurobiol 53:5191–5202.  https://doi.org/10.1007/s12035-015-9443-4 CrossRefGoogle Scholar
  29. Kallaur AP, Reiche EMV, Oliveira SR, Simão ANC, Pereira WLCJ, Alfieri DF, Flauzino T, Proença CM, Lozovoy MAB, Kaimen-Maciel DR, Maes M (2017) Genetic, immune-inflammatory, and oxidative stress biomarkers as predictors for disability and disease progression in multiple sclerosis. Mol Neurobiol 54:31–44.  https://doi.org/10.1007/s12035-015-9648-6 CrossRefGoogle Scholar
  30. Kamath AF, Chauhan AK, Kisucka J et al (2006) Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood 107:591–593.  https://doi.org/10.1182/blood-2005-06-2506 CrossRefGoogle Scholar
  31. Kassi E, Pervanidou P, Kaltsas G, Chrousos G (2011) Metabolic syndrome: definitions and controversies. BMC Med 9:48.  https://doi.org/10.1186/1741-7015-9-48 CrossRefGoogle Scholar
  32. Kolbinger F, Huppertz C, Mir A, Padova F (2016) IL-17A and multiple sclerosis: signaling pathways, producing cells and target cells in the central nervous system. Curr Drug Targets 17:1882–1893.  https://doi.org/10.2174/1389450117666160307144027 CrossRefGoogle Scholar
  33. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452CrossRefGoogle Scholar
  34. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240.  https://doi.org/10.1084/jem.20041257 CrossRefGoogle Scholar
  35. Levine RL (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:790–796.  https://doi.org/10.1016/S0891-5849(02)00765-7 CrossRefGoogle Scholar
  36. Liu J, Li M, Wang X, Yi H, Xu L, Peng FH (2016) Elevated lipid profiles in patients with acute transverse myelitis. Eur Neurol 75:142–148.  https://doi.org/10.1159/000444710 CrossRefGoogle Scholar
  37. Ljubisavljevic S, Stojanovic I, Vojinovic S, Stojanov D, Stojanovic S, Cvetkovic T, Savic D, Pavlovic D (2013) The patients with clinically isolated syndrome and relapsing remitting multiple sclerosis show different levels of advanced protein oxidation products and total thiol content in plasma and CSF. Neurochem Int 62:988–997.  https://doi.org/10.1016/j.neuint.2013.02.025 CrossRefGoogle Scholar
  38. Longoni A, Bellaver B, Bobermin LD, Santos CL, Nonose Y, Kolling J, dos Santos TM, de Assis AM, Quincozes-Santos A, Wyse ATS (2018) Homocysteine induces glial reactivity in adult rat astrocyte cultures. Mol Neurobiol 55:1966–1976.  https://doi.org/10.1007/s12035-017-0463-0 CrossRefGoogle Scholar
  39. Maes M, Carvalho AF (2018) The compensatory immune-regulatory reflex system (CIRS) in depression and bipolar disorder. Mol Neurobiol 55:8885–8903.  https://doi.org/10.1007/s12035-018-1016-x CrossRefGoogle Scholar
  40. Marrie RA, Rudick R, Horwitz R, Cutter G, Tyry T, Campagnolo D, Vollmer T (2010) Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis. Neurology 74:1041–1047.  https://doi.org/10.1212/WNL.0b013e3181d6b125 CrossRefGoogle Scholar
  41. Mikulkova Z, Praksova P, Stourac P et al (2011) Imbalance in T-cell and cytokine profiles in patients with relapsing-remitting multiple sclerosis. J Neurol Sci 300:135–141.  https://doi.org/10.1016/j.jns.2010.08.053
  42. Moghaddasi M, Mamarabadi M, Mohebi N, Razjouyan H, Aghaei M (2013) Homocysteine, vitamin B12 and folate levels in Iranian patients with multiple sclerosis: a case control study. Clin Neurol Neurosurg 115:1802–1805.  https://doi.org/10.1016/j.clineuro.2013.05.007 CrossRefGoogle Scholar
  43. Morel A, Bijak M, Niwald M, Miller E, Saluk J (2017) Markers of oxidative/nitrative damage of plasma proteins correlated with EDSS and BDI scores in patients with secondary progressive multiple sclerosis. Redox Rep 22:547–555.  https://doi.org/10.1080/13510002.2017.1325571 CrossRefGoogle Scholar
  44. Murphy ÁC, Lalor SJ, Lynch MA, Mills KHG (2010) Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 24:641–651.  https://doi.org/10.1016/j.bbi.2010.01.014 CrossRefGoogle Scholar
  45. Naggara O, Raymond J, Guilbert F, Roy D, Weill A, Altman DG (2011) Analysis by categorizing or dichotomizing continuous variables is inadvisable: an example from the natural history of unruptured aneurysms. AJNR Am J Neuroradiol 32(3):437–440CrossRefGoogle Scholar
  46. Navarro-Gonzálvez JA, García-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44:679–681.  https://doi.org/10.1515/CCLM.2008.096 Google Scholar
  47. Oliveira SR, Kallaur AP, Simão ANC, Morimoto HK, Lopes J, Panis C, Petenucci DL, da Silva E, Cecchini R, Kaimen-Maciel DR, Reiche EMV (2012) Oxidative stress in multiple sclerosis patients in clinical remission: association with the expanded disability status scale. J Neurol Sci 321:49–53.  https://doi.org/10.1016/j.jns.2012.07.045 CrossRefGoogle Scholar
  48. Oliveira SR, Colado Simão AN, Kallaur AP, Delicato de Almeida ER, Morimoto HK, Lopes J, Dichi I, Kaimen-Maciel DR, Vissoci Reiche EM (2014) Disability in patients with multiple sclerosis: influence of insulin resistance, adiposity, and oxidative stress. Nutrition 30:268–273.  https://doi.org/10.1016/j.nut.2013.08.001 CrossRefGoogle Scholar
  49. Oliveira SR, Kallaur AP, Lopes J et al (2017) Insulin resistance, atherogenicity, and iron metabolism in multiple sclerosis with and without depression: Associations with inflammatory and oxidative stress biomarkers and uric acid. Psychiatry Rev 250:113–120.  https://doi.org/10.1016/j.psychres.2016.12.039
  50. Oliveira SR, Flauzino T, Sabino BS, Kallaur AP, Alfieri DF, Kaimen-Maciel DR, Morimoto HK, de Almeida ERD, Lozovoy MAB, Reiche EMV, Dichi I, Simão ANC (2018) Elevated plasma homocysteine levels are associated with disability progression in patients with multiple sclerosis. Metab Brain Dis 33:1393–1399.  https://doi.org/10.1007/s11011-018-0224-4 CrossRefGoogle Scholar
  51. Pinhas-Hamiel O, Livne M, Harari G, Achiron A (2015) Prevalence of overweight, obesity and metabolic syndrome components in multiple sclerosis patients with significant disability. Eur J Neurol 22:1275–1279.  https://doi.org/10.1111/ene.12738 CrossRefGoogle Scholar
  52. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302.  https://doi.org/10.1002/ana.22366 CrossRefGoogle Scholar
  53. Ramsaransing GSM, Fokkema MR, Teelken A, Arutjunyan AV, Koch M, de Keyser J (2006) Plasma homocysteine levels in multiple sclerosis. J Neurol Neurosurg Psychiatry 77:189–192.  https://doi.org/10.1136/jnnp.2005.072199 CrossRefGoogle Scholar
  54. Reale M, Sanchez-Ramon S (2017) Lipids at the cross-road of autoimmunity in multiple sclerosis. Curr Med Chem 24:176–192.  https://doi.org/10.2174/0929867324666161123093606 CrossRefGoogle Scholar
  55. Reaven GM (1997) Banting lecture 1988. Role of insulin resistance in human disease. 1988. Nutrition 13:65 discussion 64, 66Google Scholar
  56. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363.  https://doi.org/10.1016/S0076-6879(94)33041-7 CrossRefGoogle Scholar
  57. Rostami A, Ciric B (2013) Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci 333:76–87.  https://doi.org/10.1016/j.jns.2013.03.002 CrossRefGoogle Scholar
  58. Russo C, Morabito F, Luise F, Piromalli A, Battaglia L, Vinci A, Trapani Lombardo V, de Marco V, Morabito P, Condino F, Quattrone A, Aguglia U (2008) Hyperhomocysteinemia is associated with cognitive impairment in multiple sclerosis. J Neurol 255:64–69.  https://doi.org/10.1007/s00415-007-0668-7 CrossRefGoogle Scholar
  59. Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188.  https://doi.org/10.1021/tx700210j CrossRefGoogle Scholar
  60. Scalfari A, Neuhaus A, Daumer M, Ebers GC, Muraro PA (2011) Age and disability accumulation in multiple sclerosis. Neurology 77:1246–1252.  https://doi.org/10.1212/WNL.0b013e318230a17d CrossRefGoogle Scholar
  61. Seshadri S (2006) Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer’s disease? J Alzheimers Dis 9:393–398.  https://doi.org/10.3233/JAD-2006-9404 CrossRefGoogle Scholar
  62. Škovierová H, Mahmood S, Blahovcová E et al (2015) Effect of homocysteine on survival of human glial cells. Physiol Res 64:747–754Google Scholar
  63. Škovierová H, Vidomanová E, Mahmood S, Sopková J, Drgová A, Červeňová T, Halašová E, Lehotský J (2016) The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci 17:1–18.  https://doi.org/10.3390/ijms17101733 Google Scholar
  64. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747.  https://doi.org/10.1146/annurev.immunol.23.021704.115707 CrossRefGoogle Scholar
  65. Sospedra M, Martin R (2016) Immunology of multiple sclerosis. Semin Neurol 36:115–127.  https://doi.org/10.1055/s-0036-1579739 CrossRefGoogle Scholar
  66. Spielberg JM, Sadeh N, Leritz EC, McGlinchey RE, Milberg WP, Hayes JP, Salat DH (2017) Higher serum cholesterol is associated with intensified age-related neural network decoupling and cognitive decline in early- to mid-life. Hum Brain Mapp 38:3249–3261.  https://doi.org/10.1002/hbm.23587 CrossRefGoogle Scholar
  67. Sredni-Kenigsbuch D (2002) Th1/Th2 cytokines in the central nervous system. Int J Neurosci 112:665–703.  https://doi.org/10.1080/00207450290025725 CrossRefGoogle Scholar
  68. Streck EL, Vieira PS, Wannmacher CM, Dutra-Filho CS, Wajner M, Wyse AT (2003) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18:147–154CrossRefGoogle Scholar
  69. Suarez-Kurtz G, Pena SDJ, Struchiner CJ, Hutz MH (2012) Pharmacogenomic diversity among Brazilians: influence of ancestry, self-reported color, and geographical origin. Front Pharmacol 3:1–7.  https://doi.org/10.3389/fphar.2012.00191 CrossRefGoogle Scholar
  70. Tettey P, Simpson S, Taylor B et al (2014) An adverse lipid profile is associated with disability and progression in disability, in people with MS. Mult Scler J 20:1737–1744.  https://doi.org/10.1177/1352458514533162 CrossRefGoogle Scholar
  71. Teunissen CE, Killestein J, Kragt JJ, Polman CH, Dijkstra CD, Blom HJ (2008) Serum homocysteine levels in relation to clinical progression in multiple sclerosis. J Neurol Neurosurg Psychiatry 79:1349–1353.  https://doi.org/10.1136/jnnp.2008.151555 CrossRefGoogle Scholar
  72. Tremlett H, Paty D, Devonshire V (2006) Disability progression in multiple sclerosis is slower than previously reported. Neurology 66:172–177CrossRefGoogle Scholar
  73. Tremlett H, Zhao Y, Joseph J, Devonshire V, the UBCMS Clinic Neurologists (2008) Relapses in multiple sclerosis are age- and time-dependent. J Neurol Neurosurg Psychiatry 79:1368–1374.  https://doi.org/10.1136/jnnp.2008.145805 CrossRefGoogle Scholar
  74. Trojano M, Liguori M, Bosco Zimatore G, Bugarini R, Avolio C, Paolicelli D, Giuliani F, de Robertis F, Marrosu MG, Livrea P (2002) Age-related disability in multiple sclerosis. Ann Neurol 51:475–480.  https://doi.org/10.1002/ana.10147 CrossRefGoogle Scholar
  75. Versini M, Jeandel PY, Rosenthal E, Shoenfeld Y (2014) Obesity in autoimmune diseases: not a passive bystander. Autoimmun Rev 13:981–1000.  https://doi.org/10.1016/j.autrev.2014.07.001 CrossRefGoogle Scholar
  76. Weber D, Davies MJ, Grune T (2015) Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: focus on sample preparation and derivatization conditions. Redox Biol 5:367–380CrossRefGoogle Scholar
  77. Weinstock-Guttman B, Zivadinov R, Mahfooz N, Carl E, Drake A, Schneider J, Teter B, Hussein S, Mehta B, Weiskopf M, Durfee J, Bergsland N, Ramanathan M (2011) Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J Neuroinflammation 8:127.  https://doi.org/10.1186/1742-2094-8-127 CrossRefGoogle Scholar
  78. Witko-Sarsat V, Friedlander M, Nguyen Khoa T, et al (1998) Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 161:2524–32.Google Scholar
  79. Zheng J, Bizzozero OA (2010) Accumulation of protein carbonyls within cerebellar astrocytes in murine experimental autoimmune encephalomyelitis. J Neurosci Res 88:3376–3385.  https://doi.org/10.1002/jnr.22488 CrossRefGoogle Scholar
  80. Zhu Y, He ZY, Liu HN (2011) Meta-analysis of the relationship between homocysteine, vitamin B12, folate, and multiple sclerosis. J Clin Neurosci 18:933–938.  https://doi.org/10.1016/j.jocn.2010.12.022 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tamires Flauzino
    • 1
  • Andrea Name Colado Simão
    • 2
  • Wildea Lice de Carvalho Jennings Pereira
    • 1
  • Daniela Frizon Alfieri
    • 1
  • Sayonara Rangel Oliveira
    • 2
  • Ana Paula Kallaur
    • 1
  • Marcell Alysson Batisti Lozovoy
    • 2
  • Damacio Ramón Kaimen-Maciel
    • 3
  • Michael Maes
    • 4
    • 5
  • Edna Maria Vissoci Reiche
    • 2
    Email author
  1. 1.Postgraduate Program, Health Sciences CenterState University of LondrinaLondrinaBrazil
  2. 2.Department of Pathology, Clinical Analysis and Toxicology, Health Sciences CenterUniversity Hospital, State University of LondrinaLondrinaBrazil
  3. 3.Department of Clinical MedicineUniversity of LondrinaLondrinaBrazil
  4. 4.Impact Strategic Research Centre, School of MedicineDeakin UniversityGeelongAustralia
  5. 5.Department of PsychiatryKing Chulalongkorn Memorial HospitalBangkokThailand

Personalised recommendations