Metabolic Brain Disease

, Volume 34, Issue 5, pp 1473–1485 | Cite as

Neuronal damage and neuroinflammation markers in patients with autoimmune encephalitis and multiple sclerosis

  • V. FominykhEmail author
  • L. Brylev
  • V. Gaskin
  • R. Luzin
  • A. Yakovlev
  • I. Komoltsev
  • I. Belousova
  • A. Rosliakova
  • A. Guekht
  • N. Gulyaeva
Original Article


Inflammatory diseases of the central nervous system (CNS) are a diagnostic challenge to clinicians. Autoimmune encephalitis (AE) is an important diagnostic consideration in patients with CNS inflammatory disorders; despite of a wide range of neuropsychiatric symptoms it should be diagnosed as soon as possible and the patient transferred to the neurologist. We studied a group of AE patients (n = 24) as compared to multiple sclerosis (MS, n = 61) and control (n = 19) groups. Detailed clinical pictures of patients are presented. We focused on relevant cerebrospinal fluid (CSF) tests like protein levels, cytosis and oligoclonal bands, neuroinflammation indices (interleukin-6, soluble receptor of IL-6, neopterin, anti-ribosomal proteins antibodies) and markers of neurodegeneration (phosphorylated neurofilament heavy chain, pNfh). Elevated neopterin level was found in AE group as compared to the MS and control groups, while protein and pNfh were increased in both AE and MS groups. In the MS group, the cytosis and soluble receptor of IL-6 were higher as compared to the control group. Anti-ribosomal proteins antibodies were increased in a single patient with AE. High levels of protein were predictive of mortality in AE patients, while IL-6 and pNfh were elevated in severe AE patients. AE patients with paraneoplastic etiology demonstrated oligoclonal bands positivity. Taken together, our results suggest the neopterin as an additional marker of autoimmune brain inflammation. Though higher levels of protein, IL-6 and pNfh were found in patients with severe disease progression and death, prognostic values of these markers should be validated in larger cohorts of patients.


Autoimmune encephalitis Multiple sclerosis Interleukin 6 Neopterin Neuroinflammation Neurodegeneration 



acute disseminated encephalomyelitis


autoimmune encephalitis


amyotrophic lateral sclerosis


ionotropic glutamate receptor




contactin-associated protein-2


сentral nervous system


cerebrospinal fluid


Kurtzke Expanded Disability Status Scale


gamma-aminobutyric acid


glutamic acid decarboxylase






Leucine-rich glioma-inactivated 1




magnetic resonance imaging


multiple sclerosis




neuromyelitisoptica spectrum disorders


oligoclonal bands




phosphorylated neurofilament heavy chain


soluble Interleukin-6 Receptor


systemic lupus erythematosus



We thank all patients who participated in this study.

Funding source

Partially supported by Russian Academy of Sciences, Program Fundamental Bases of Physiological Adaptation Technologies.

Compliance with ethical standards

Conflict of interest

No conflict of interest.

Supplementary material

11011_2019_452_MOESM1_ESM.pdf (57 kb)
ESM 1 Correlation analysis of biochemical markers in AE patients (p < 0.05 for all correlation plots). (PDF 57 kb)
11011_2019_452_MOESM2_ESM.pdf (41 kb)
ESM 2 Correlation analysis of clinical characteristics and biochemical markers in MS patients (p < 0.05 for all correlation plots). (PDF 40 kb)
11011_2019_452_MOESM3_ESM.pdf (133 kb)
ESM 3 The induction of neopterin production in the brain (scheme). Pro-inflammatory cytokines (e.g. interferon gamma) induce the expression in neuronal cells of guanosine triphosphate-cyclohydrolase I converting guanosine triphosphate into 7,8-dehydroneopterin triphosphate, which, normally, is converted to 5,6,7,8-tetrahydrobiopterin (cofactor of monoaminoxidase involved in neurotransmitter generation). In conditions favoring oxidation and dephosphorylation in monocytic cells it is converted to neopterin. (PDF 133 kb)


  1. Aguinis H, Gottfredson R, Joo H (2013)Best-practice recommendations for defining, identifying, and handling outliers. Organ Res Methods 16(2):270–301. CrossRefGoogle Scholar
  2. Andersson M, Alvarez-Cermeño J, Bernardi G et al (1994) Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report. J Neurol Neurosurg Psychiatry 57(8):897–902 ReviewCrossRefGoogle Scholar
  3. Anesten B, Yilmaz A, Hagberg L, Zetterberg H, Nilsson S, Brew BJ, Fuchs D, Price RW, Gisslén M (2016) Blood-brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV. Neurol Neuroimmunol Neuroinflamm 3(6):e300. CrossRefGoogle Scholar
  4. Araki M, Matsuoka T, Miyamoto K, Kusunoki S, Okamoto T, Murata M et al (2014) Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitisoptica: a pilot study. Neurology 82(15):1302–1306. CrossRefGoogle Scholar
  5. Azuar C, Levy R (2018) Behavioral disorders: the 'blind spot' of neurology and psychiatry. Rev Neurol (Paris) 174(4):182–189. CrossRefGoogle Scholar
  6. Baizabal-Carvallo JF, Jankovic J (2018) Autoimmune and paraneoplastic movement disorders: an update. J Neurol Sci 15(385):175–184. CrossRefGoogle Scholar
  7. Briani C, Lucchetta M, Ghirardello A et al (2009) Neurolupus is associated with anti-ribosomal P protein antibodies: an inception cohort study. J Autoimmun 32(2):79–84. CrossRefGoogle Scholar
  8. Buchner C, Bryant C, Eslami A et al (2014)Anti-nuclear antibody screening using HEp-2 cells. J Vis Exp 23(88):e51211. Google Scholar
  9. Byun J, Lee S, Moon J et al (2016) Distinct intrathecal interleukin-17/interleukin-6 activation in anti-N-methyl-d-aspartate receptor encephalitis. J Neuroimmunol 297:141–147CrossRefGoogle Scholar
  10. Constantinescu R, Krýsl D, Andrén K, Asztély F, Bergquist F, Zetterberg H, Andreasson U, Axelsson M, Menachem EB, Jons D, Mahamud U, Malmeström C, Rosengren L, Blennow K (2017) Cerebrospinal fluid markers of neuronal and glial cell damage in patients with autoimmune neurologic syndromes with and without underlyingmalignancies. J Neuroimmunol 306:25–30. CrossRefGoogle Scholar
  11. Dale RC, Brilot F, Fagan E, Earl J (2009) Cerebrospinal fluid neopterin in pediatric neurology: a marker of active central nervous system inflammation. Dev Med Child Neurol 51(4):317–323. CrossRefGoogle Scholar
  12. Dalmau J (2015) Autoimmunity: the good, the bad, and the ugly. Neurol Neuroimmunol Neuroinflamm 2(6):e181. CrossRefGoogle Scholar
  13. Dalmau J, Gleichman AJ, Hughes EG et al (2008)Anti-NMDA-receptor encephalitis: caseseries and analysis of the effects of antibodies. Lancet Neurol 7(12):1091–1098. CrossRefGoogle Scholar
  14. Deisenhammer F, Bartos A, Egg R et al (2006) EFNS Task Force. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur J Neurol 13(9):913–922. CrossRefGoogle Scholar
  15. Dubey D, Pittock SJ, Kelly CR et al (2018) Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol 83(1):166–177. CrossRefGoogle Scholar
  16. Edén A, Marcotte TD, Heaton RK et al (2016) Increased intrathecal immune activation in virally suppressed HIV-1 infected patients with neurocognitive impairment. PLoS One 11(6):e0157160. CrossRefGoogle Scholar
  17. Fominykh V, Frei E, Brylev L et al (2018a) Neurochem J 12:311. CrossRefGoogle Scholar
  18. Fominykh V, Vorobyeva A, Onufriev MV et al (2018b) Interleukin-6, S-Nitrosothiols, and neurodegeneration in different central nervous system demyelinating disorders: is there a relationship? J Clin Neurol 14(3):327–332. CrossRefGoogle Scholar
  19. Ganesh A, Wesley SF (2018) Practice current: when do you suspect autoimmuneencephalitis and what is the role of antibody testing? Neurol Clin Pract 8(1):67–73. CrossRefGoogle Scholar
  20. Gendron TF, C9ORF72 Neurofilament Study Group, Daughrity LM, Heckman MG, Diehl NN, Wuu J, Miller TM, Pastor P, Trojanowski JQ, Grossman M, Berry JD, Hu WT, Ratti A, Benatar M, Silani V, Glass JD, Floeter MK, Jeromin A, Boylan KB, Petrucelli L (2017) Phosphorylated neurofilament heavy chain: a biomarker of survivalfor C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol 82(1):139–146. CrossRefGoogle Scholar
  21. Graus F, Titulaer MJ, Balu R et al (2016) A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 15(4):391–404. CrossRefGoogle Scholar
  22. Hagberg L, Cinque P, Gisslen M et al (2010) Cerebrospinal fluid neopterin: an informative biomarker of centralnervous system immune activation in HIV-1 infection. AIDS Res Ther 7:15. CrossRefGoogle Scholar
  23. Harutyunyan G, Hauer L, Dünser MW et al (2017) Autoimmune encephalitis at the NeurologicalIntensive care unit: etiologies, reasons for admission and survival. NeurocritCare 27(1):82–89. CrossRefGoogle Scholar
  24. Hébert J, Day GS, Steriade C et al (2018)Long-term CognitiveOutcomes in patients with autoimmune encephalitis. Can J Neurol Sci 25:1–5. Google Scholar
  25. Herken J, Prüss H (2017) Red flags: clinical signs for identifying AutoimmuneEncephalitis in psychiatric patients. Front Psychiatry 8:25. CrossRefGoogle Scholar
  26. Honnorat J, Plazat LO (2018) Autoimmune encephalitis and psychiatric disorders. Rev Neurol (Paris) 174(4):228–236. CrossRefGoogle Scholar
  27. Horellou P, Wang M, Keo V et al (2015) Increased interleukin-6 correlates with myelin oligodendrocyte glycoprotein antibodies in pediatric monophasic demyelinating diseases and multiple sclerosis. J Neuroimmunol 289:1–7. CrossRefGoogle Scholar
  28. Hottenrott T, Dersch R, Berger B et al (2015) The intrathecal, polyspecific antiviral immune response in neurosarcoidosis, acute disseminated encephalomyelitis and autoimmune encephalitis compared tomultiple sclerosis in a tertiary hospital cohort. Fluids Barriers CNS 12:27. CrossRefGoogle Scholar
  29. Körtvelyessy P, Prüss H, Thurner L et al (2018) Biomarkers of neurodegeneration in autoimmune-mediated encephalitis. FrontNeurol 9:668. eCollection 2018Google Scholar
  30. Kothur K, Wienholt L, Mohammad SS et al (2016) Utility of CSF cytokine/chemokines as markers of active intrathecal inflammation: comparison of demyelinating, anti-NMDAR and enteroviral encephalitis. PLoS One 11(8):e0161656. eCollection 2016CrossRefGoogle Scholar
  31. Lascano AM, Vargas MI, Lalive PH (2018) Diagnostic tools for immune causes of encephalitis. Clin Microbiol Infect.
  32. Lee SK, Lee ST (2016) The laboratory diagnosis of autoimmune encephalitis. J Epilepsy Res 6(2):45–50. CrossRefGoogle Scholar
  33. Leypoldt F, Armangue T, Dalmau J (2015) Autoimmune encephalopathies. Ann N Y AcadSci 1338:94–114. CrossRefGoogle Scholar
  34. Li L, Sun L, Ret al D (2017) Application of the 2016 diagnostic approach for autoimmune encephalitis from lancet neurology to Chinese patients. BMC Neurol 17:195. CrossRefGoogle Scholar
  35. Liao S, Qian Y, Hu H et al (2017) Clinical characteristics and predictors of outcome for Onconeural antibody-associated disorders: a retrospective analysis. Front Neurol 8:584. CrossRefGoogle Scholar
  36. Lin WL, Chi H, Huang FY et al (2016) Analysis of clinical outcomes inpediatric bacterial meningitis focusing on patients without cerebrospinal fluid pleocytosis. J Microbiol Immunol Infect 49(5):723–728. CrossRefGoogle Scholar
  37. Molero-Luis M, Fernandez-Urena S et al (2013) Cerebrospinal fluid neopterin analysis in neuropediatric patients: establishment of a new cut off-value for the identification of inflammatory-immune mediated processes. PLoS One 8(12):e83237. CrossRefGoogle Scholar
  38. Motta I, Allice T, Romito A et al (2017) Cerebrospinal fluid viral load and neopterin in HIV-positive patients with undetectable viraemia. Antivir Ther 22(6):539–543. CrossRefGoogle Scholar
  39. Padberg F, Feneberg W, Schmidt S et al (1999) CSF and serum levels of soluble interleukin-6 receptors (sIL-6R and sgp130), but not of interleukin-6 are altered in multiple sclerosis. J Neuroimmunol 99(2):218–223. CrossRefGoogle Scholar
  40. Pollak TA, Lennox BR (2018) Time for a change of practice: the real-world value of testing for neuronal autoantibodies in acute first-episode psychosis. BJ Psych Open 4(4):262–264. Google Scholar
  41. Sarigecili E, Cobanogullari MD, Komur M et al (2018) Mult Scler Relat Disord 28:101–103. CrossRefGoogle Scholar
  42. Stelmasiak Z, Kozioł-Montewka M, Dobosz B, Rejdak K (2001)IL-6 and sIL-6R concentration in the cerebrospinal fluid and serum of MS patients. Med SciMonit 7(5):914–918Google Scholar
  43. Thompson AJ, Banwell BL, Barkhof F et al (2018a) Diagnosis of multiple sclerosis: 2017revisions of the McDonald criteria. Lancet Neurol 17(2):162–173. CrossRefGoogle Scholar
  44. Thompson J, Bi M, Murchison AG, Makuch M et al (2018b) Faciobrachial dystonic seizures study group. The importance of early immunotherapy in patients with faciobrachial dystonic seizures. Brain 141(2):348–356. CrossRefGoogle Scholar
  45. Tkachenko OY, Lapin SV, Mazing AV et al (2017) The comparative analysis of immunologic techniques of detection of anti-phospholipid antibodies. Klin Lab Diagn 62(1):40–44 RussianGoogle Scholar
  46. Varley J, Taylor J, Irani SR (2018)Autoantibody-mediated diseases of the CNS:structure, dysfunction and therapy. Neuropharmacology 132:71–82. CrossRefGoogle Scholar
  47. Vorobyeva AA, Fominykh VV, Onufriev MV et al (2014) Neurochem J 8:221. CrossRefGoogle Scholar
  48. Wagner JN, Kalev O, Sonnberger M, Krehan I, von Oertzen T (2018) Evaluation of clinical and Paraclinical findings for the differential diagnosis of Autoimmuneand infectious encephalitis. Front Neurol 9:434. CrossRefGoogle Scholar
  49. Wilken M, Ameghino L, Cammarota Á, Nogués MA, Del Castillo M, Farez MF (2017) Clinical and cerebrospinal fluid findings contribute to the early differentiation betweeninfectious and noninfectious encephalitis. Medicina (B Aires) 77(3):214–221Google Scholar
  50. Yasar KK, Pehlivanoglu F, Sengoz G (2010) Predictors of mortality in tuberculousmeningitis: a multivariate analysis of 160 cases. Int J Tuberc Lung Dis 14(10):1330–1335Google Scholar
  51. Yeshokumar AK, Gordon-Lipkin E, Arenivas A, Cohen J, Venkatesan A, Saylor D, Probasco JC (2017) Neurobehavioral outcomes in autoimmune encephalitis. J Neuroimmunol 312:8–14. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Higher Nervous Activity and NeurophysiologyMoscowRussia
  2. 2.Bujanov Moscow City Clinical HospitalMoscowRussia
  3. 3.Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of MoscowMoscowRussia
  4. 4.Research Center of NeurologyMoscowRussia
  5. 5.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations