Metabolic Brain Disease

, Volume 34, Issue 5, pp 1447–1455 | Cite as

Genetic testing of Mucopolysaccharidoses disease using multiplex PCR- based panels of STR markers: in silico analysis of novel mutations

  • Mehdi Shafaat
  • Mehrdad Hashemi
  • Ahmad Majd
  • Maryam Abiri
  • Sirous ZeinaliEmail author
Original Article


The Mucopolysaccharidoses (MPS) are group of inherited metabolic diseases caused by the deficiency of enzymes required to degrade glycosaminoglycans (GAGs) in the lysosomes. GAGs are sulfated polysaccharides involving repeating disaccharides, uronic acid and hexosamines including chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS) and keratan sulfate (KS). Hyaluronan is excluded in terms of being non-sulfated in the GAG family. Different types of mutations have been identified as the causative agent in all types of MPS. Herein, we planned to investigate the pathogenic mutations in different types of MPS including type I (IDUA gene), IIIA (SGSH) and IIIB (NAGLU) in the eight Iranian patients. Autozygosity mapping was performed to identify the potential pathogenic variants in these 8 patients indirectly with the clinical diagnosis of MPSs. so three panels of STR (Short Tandem Repeat) markres flanking IDUA, SGSH and NAGLU genes were selected for multiplex PCR amplification. Then in each family candidate gene was sequenced to identify the pathogenic mutation. Our study showed two novel mutations c.469 T > C and c.903C > G in the IDUA gene, four recurrent mutations: c.1A > C in IDUA, c.220C > T, c.1298G > A in SGSH gene and c.457G > A in the NAGLU gene. The c.1A > C in IDUA was the most common mutation in our study. In silico analysis were performed as well to predict the pathogenicity of the novel variants.


Mucopolysaccharidoses (MPS) Autozygosity mapping Linkage Mutation analysis Iran 


Compliance with ethical standards

Conflict of interest

Mehdi Shafaat declares that there is no conflict of interest. Dr. Mehrdad Hashemi declares that there is no conflict of interest. Dr.Ahmad Majd declares that there is no conflict of interest. Dr. Maryam Abiri declares that there is no conflict of interest. Dr. Sirous zeinali declares that there is no conflict of interest.

Informed consent

Informed consent was received from 8 patients for participation in this study.

Animal rights

This study does not contain any animal study.


  1. Abiri, M., Karamzadeh, R., Mojbafan, M., Alaei, M. R., Jodaki, A., Safi, M., . . . Zeinali, S. (2017). In silico analysis of novel mutations in maple syrup urine disease patients from Iran. Metab Brain Dis, 32(1), 105–113. CrossRefGoogle Scholar
  2. Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., . . . Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nat Methods, 7(4), 248–249. CrossRefGoogle Scholar
  3. Atceken, N., Ozgul, R. K., Yucel Yilmaz, D., Tokatli, A., Coskun, T., Sivri, H. S., . . . Karaca, M. (2016). Evaluation and identification of IDUA gene mutations in Turkishpatients with mucopolysaccharidosis type I. Turk J Med Sci, 46(2), 404–408. CrossRefGoogle Scholar
  4. Beck M, Arn P, Giugliani R, Muenzer J, Okuyama T, Taylor J, Fallet S (2014) The natural history of MPS I: global perspectives from the MPS I registry. Genet Med 16(10):759–765. CrossRefGoogle Scholar
  5. Beesley CE, Young EP, Vellodi A, Winchester BG (2000) Mutational analysis of Sanfilippo syndrome type a (MPS IIIA): identification of 13 novel mutations. J Med Genet 37(9):704–707CrossRefGoogle Scholar
  6. Bertola, F., Filocamo, M., Casati, G., Mort, M., Rosano, C., Tylki-Szymanska, A., . . . Parini, R. (2011). IDUA mutational profiling of a cohort of 102 European patients with mucopolysaccharidosis type I: identification and characterization of 35 novel alpha-L-iduronidase (IDUA) alleles. Hum Mutat, 32(6), E2189–E2210. CrossRefGoogle Scholar
  7. Bie H, Yin J, He X, Kermode AR, Goddard-Borger ED, Withers SG, James MN (2013) Insights into mucopolysaccharidosis I from the structure and action of alpha-L-iduronidase. Nat Chem Biol 9(11):739–745. CrossRefGoogle Scholar
  8. Bunge, S., Kleijer, W. J., Steglich, C., Beck, M., Zuther, C., Morris, C. P., . . . Gal, A. (1994). Mucopolysaccharidosis type I: identification of 8 novel mutations and determination of the frequency of the two common alpha-L-iduronidase mutations (W402X and Q70X) among European patients. Hum Mol Genet, 3(6), 861–866CrossRefGoogle Scholar
  9. Chabas A, Montfort M, Martinez-Campos M, Diaz A, Coll MJ, Grinberg D, Vilageliu L (2001) Mutation and haplotype analyses in 26 Spanish Sanfilippo syndrome type a patients: possible single origin for 1091delC mutation. Am J Med Genet 100(3):223–228CrossRefGoogle Scholar
  10. Chkioua L, Boudabous H, Jaballi I, Grissa O, Turkia HB, Tebib N, Laradi S (2018) Novel splice site IDUA gene mutation in Tunisian pedigrees with hurler syndrome. Diagn Pathol 13(1):35. CrossRefGoogle Scholar
  11. Chkioua, L., Khedhiri, S., Kassab, A., Bibi, A., Ferchichi, S., Froissart, R., . . . Miled, A. (2011). Molecular analysis of mucopolysaccharidosis type I in Tunisia: identification of novel mutation and eight novel polymorphisms. Diagn Pathol, 6, 39. CrossRefGoogle Scholar
  12. Duncan, F. J., Naughton, B. J., Zaraspe, K., Murrey, D. A., Meadows, A. S., Clark, K. R., . . . McCarty, D. M. (2015). Broad functional correction of molecular impairments by systemic delivery of scAAVrh74-hSGSH gene delivery in MPS IIIA mice. Mol Ther, 23(4), 638–647. CrossRefGoogle Scholar
  13. Gaffke L, Pierzynowska K, Piotrowska E, Wegrzyn G (2018) How close are we to therapies for Sanfilippo disease? Metab Brain Dis 33(1):1–10. CrossRefGoogle Scholar
  14. Hijikata, A., Raju, R., Keerthikumar, S., Ramabadran, S., Balakrishnan, L., Ramadoss, S. K., . . . Ohara, O. (2010). Mutation@a glance: an integrative web application for analysing mutations from human genetic diseases. DNA Res, 17(3), 197–208. CrossRefGoogle Scholar
  15. Hinderer, C., Bell, P., Louboutin, J. P., Katz, N., Zhu, Y., Lin, G., . . . Wilson, J. M. (2016). Neonatal tolerance induction enables accurate evaluation of gene therapy for MPS I in a canine model. Mol Genet Metab, 119(1–2), 124–130. CrossRefGoogle Scholar
  16. Huh, H. J., Seo, J. Y., Cho, S. Y., Ki, C. S., Lee, S. Y., Kim, J. W., . . . Jin, D. K. (2013). The first Korean case of mucopolysaccharidosis IIIC (Sanfilippo syndrome type C) confirmed by biochemical and molecular investigation. Ann Lab Med, 33(1), 75–79. CrossRefGoogle Scholar
  17. Jansen, A. C., Cao, H., Kaplan, P., Silver, K., Leonard, G., De Meirleir, L., . . . Andermann, E. (2007). Sanfilippo syndrome type D: natural history and identification of 3 novel mutations in the GNS gene. Arch Neurol, 64(11), 1629–1634. CrossRefGoogle Scholar
  18. Khan, S. A., Peracha, H., Ballhausen, D., Wiesbauer, A., Rohrbach, M., Gautschi, M., . . . Tomatsu, S. (2017). Epidemiology of mucopolysaccharidoses. Mol Genet Metab, 121(3), 227–240. CrossRefGoogle Scholar
  19. Kim, C., Kwak, M. J., Cho, S. Y., Ko, A. R., Rheey, J., Kwon, J. Y., . . . Jin, D. K. (2015). Decreased performance in IDUA knockout mouse mimic limitations of joint function and locomotion in patients with hurler syndrome. Orphanet J Rare Dis, 10, 121. CrossRefGoogle Scholar
  20. Knottnerus SJG, Nijmeijer SCM, L IJ, Te Brinke H, van Vlies N, Wijburg FA (2017) Prediction of phenotypic severity in mucopolysaccharidosis type IIIA. Ann Neurol 82(5):686–696. CrossRefGoogle Scholar
  21. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081. CrossRefGoogle Scholar
  22. Lau AA, Shamsani NJ, Winner LK, Hassiotis S, King BM, Hopwood JJ, Hemsley KM (2013) Neonatal bone marrow transplantation in MPS IIIA mice. JIMD Rep 8:121–132. CrossRefGoogle Scholar
  23. Li P, Wood T, Thompson JN (2002) Diversity of mutations and distribution of single nucleotide polymorphic alleles in the human alpha-L-iduronidase (IDUA) gene. Genet Med 4(6):420–426 10.109700125817-200211000-00004CrossRefGoogle Scholar
  24. Lum, S. H., Miller, W. P., Jones, S., Poulton, K., Ogden, W., Lee, H., . . . Wynn, R. F. (2017a). Changes in the incidence, patterns and outcomes of graft failure following hematopoietic stem cell transplantation for hurler syndrome. Bone Marrow Transplant, 52(6), 846–853. CrossRefGoogle Scholar
  25. Lum, S. H., Stepien, K. M., Ghosh, A., Broomfield, A., Church, H., Mercer, J., . . . Wynn, R. (2017b). Long term survival and cardiopulmonary outcome in children with hurler syndrome after haematopoietic stem cell transplantation. J Inherit Metab Dis, 40(3), 455–460. CrossRefGoogle Scholar
  26. Marco, S., Pujol, A., Roca, C., Motas, S., Ribera, A., Garcia, M., . . . Bosch, F. (2016). Progressive neurologic and somatic disease in a novel mouse model of human mucopolysaccharidosis type IIIC. Dis Model Mech, 9(9), 999–1013. CrossRefGoogle Scholar
  27. Muenzer J (2011) Overview of the mucopolysaccharidoses. Rheumatology (Oxford) 50(Suppl 5):v4–v12.
  28. Oussoren E, Keulemans J, van Diggelen OP, Oemardien LF, Timmermans RG, van der Ploeg AT, Ruijter GJ (2013) Residual alpha-L-iduronidase activity in fibroblasts of mild to severe Mucopolysaccharidosis type I patients. Mol Genet Metab 109(4):377–381. CrossRefGoogle Scholar
  29. Peck SH, Casal ML, Malhotra NR, Ficicioglu C, Smith LJ (2016) Pathogenesis and treatment of spine disease in the mucopolysaccharidoses. Mol Genet Metab 118(4):232–243. CrossRefGoogle Scholar
  30. Prommajan K, Ausavarat S, Srichomthong C, Puangsricharern V, Suphapeetiporn K, Shotelersuk V (2011) A novel p.E276K IDUA mutation decreasing alpha-L-iduronidase activity causes mucopolysaccharidosis type I. Mol Vis 17:456–460Google Scholar
  31. Rodgers NJ, Kaizer AM, Miller WP, Rudser KD, Orchard PJ, Braunlin EA (2017) Mortality after hematopoietic stem cell transplantation for severe mucopolysaccharidosis type I: the 30-year University of Minnesota experience. J Inherit Metab Dis 40(2):271–280. CrossRefGoogle Scholar
  32. Schmidtchen, A., Greenberg, D., Zhao, H. G., Li, H. H., Huang, Y., Tieu, P. , . . .Neufeld, E. F. (1998). NAGLU mutations underlying Sanfilippo syndrome type B. Am J Hum Genet, 62(1), 64–69. CrossRefGoogle Scholar
  33. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362. CrossRefGoogle Scholar
  34. Scott HS, Anson DS, Orsborn AM, Nelson PV, Clements PR, Morris CP, Hopwood JJ (1991) Human alpha-L-iduronidase: cDNA isolation and expression. Proc Natl Acad Sci U S A 88(21):9695–9699CrossRefGoogle Scholar
  35. Scott, H. S., Blanch, L., Guo, X. H., Freeman, C., Orsborn, A., Baker, E., . . . Hopwood, J. J. (1995). Cloning of the sulphamidase gene and identification of mutations in Sanfilippo a syndrome. Nat Genet, 11(4), 465–467. CrossRefGoogle Scholar
  36. Shafaat, M., Alaee, M. R., Rahmanifar, A., Setoodeh, A., Razzaghy-Azar, M., Bagherian, H., . . . Zeinali, S. (2018). Autozygosity mapping of methylmalonic acidemia associated genes by short tandem repeat markers facilitates the identification of five novel mutations in an Iranian patient cohort. Metab Brain Dis, 33(5), 1689–1697. CrossRefGoogle Scholar
  37. Shapiro, E. G., Nestrasil, I., Delaney, K. A., Rudser, K., Kovac, V., Nair, N., . . . Whitley, C. B. (2016). A prospective natural history study of Mucopolysaccharidosis type IIIA. J Pediatr, 170, 278–287 e271-274. CrossRefGoogle Scholar
  38. Tebani, A., Abily-Donval, L., Schmitz-Afonso, I., Heron, B., Piraud, M., Ausseil, J., . . . Bekri, S. (2018). Unveiling metabolic remodeling in mucopolysaccharidosis type III through integrative metabolomics and pathway analysis. J Transl Med, 16(1), 248. CrossRefGoogle Scholar
  39. Terlato NJ, Cox GF (2003) Can mucopolysaccharidosis type I disease severity be predicted based on a patient's genotype? A comprehensive review of the literature. Genet Med 5(4):286–294. CrossRefGoogle Scholar
  40. Thomas JA, Beck M, Clarke JT, Cox GF (2010) Childhood onset of Scheie syndrome, the attenuated form of mucopolysaccharidosis I. J Inherit Metab Dis 33(4):421–427. CrossRefGoogle Scholar
  41. Ugrinov KG, Freed SD, Thomas CL, Lee SW (2015) A multiparametric computational algorithm for comprehensive assessment of genetic mutations in mucopolysaccharidosis type IIIA (Sanfilippo syndrome). PLoS One 10(3):e0121511. CrossRefGoogle Scholar
  42. Valenzano KJ, Khanna R, Powe AC, Boyd R, Lee G, Flanagan JJ, Benjamin ER (2011) Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Dev Technol 9(3):213–235. CrossRefGoogle Scholar
  43. Valstar, M. J., Bruggenwirth, H. T., Olmer, R., Wevers, R. A., Verheijen, F. W., Poorthuis, B. J., . . . Wijburg, F. A. (2010). Mucopolysaccharidosis type IIIB may predominantly present with an attenuated clinical phenotype. J Inherit Metab Dis, 33(6), 759–767. CrossRefGoogle Scholar
  44. Vazna, A., Beesley, C., Berna, L., Stolnaja, L., Myskova, H., Bouckova, M., . . . Dvorakova, L. (2009). Mucopolysaccharidosis type I in 21 Czech and Slovak patients: mutation analysis suggests a functional importance of C-terminus of the IDUA protein. Am J Med Genet A, 149A(5), 965–974. CrossRefGoogle Scholar
  45. Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G (2010) Protein structure analysis of mutations causing inheritable diseases. An e-science approach with life scientist friendly interfaces. BMC Bioinformatics 11:548. CrossRefGoogle Scholar
  46. Verhoeven WM, Csepan R, Marcelis CL, Lefeber DJ, Egger JI, Tuinier S (2010) Sanfilippo B in an elderly female psychiatric patient: a rare but relevant diagnosis in presenile dementia. Acta Psychiatr Scand 122(2):162–165. CrossRefGoogle Scholar
  47. Voskoboeva EY, Krasnopolskaya XD, Mirenburg TV, Weber B, Hopwood JJ (1998) Molecular genetics of mucopolysaccharidosis type I: mutation analysis among the patients of the former Soviet Union. Mol Genet Metab 65(2):174–180. CrossRefGoogle Scholar
  48. Wang X, Zhang W, Shi H, Qiu Z, Meng Y, Yao F, Wei M (2012) Mucopolysaccharidosis I mutations in Chinese patients: identification of 27 novel mutations and 6 cases involving prenatal diagnosis. Clin Genet 81(5):443–452. CrossRefGoogle Scholar
  49. Weber B, Blanch L, Clements PR, Scott HS, Hopwood JJ (1996) Cloning and expression of the gene involved in Sanfilippo B syndrome (mucopolysaccharidosis III B). Hum Mol Genet 5(6):771–777CrossRefGoogle Scholar
  50. Weber B, Guo XH, Wraith JE, Cooper A, Kleijer WJ, Bunge S, Hopwood JJ (1997) Novel mutations in Sanfilippo a syndrome: implications for enzyme function. Hum Mol Genet 6(9):1573–1579CrossRefGoogle Scholar
  51. Zhao HG, Li HH, Bach G, Schmidtchen A, Neufeld EF (1996) The molecular basis of Sanfilippo syndrome type B. Proc Natl Acad Sci U S A 93(12):6101–6105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mehdi Shafaat
    • 1
  • Mehrdad Hashemi
    • 2
  • Ahmad Majd
    • 1
  • Maryam Abiri
    • 3
  • Sirous Zeinali
    • 4
    • 5
    Email author
  1. 1.Department of Biology, Faculty of ScienceNorth Tehran Branch of Islamic Azad UniversityTehranIran
  2. 2.Department of Genetics, Tehran Medical SciencesIslamic Azad UniversityTehranIran
  3. 3.Department of Medical Genetics and Molecular biology, School of MedicineIran University of Medical SciencesTehranIran
  4. 4.Department of Molecular Medicine, Biotechnology Research CenterPasteur Institute of IranTehranIran
  5. 5.Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics CenterTehranIran

Personalised recommendations