Advertisement

Metabolic Brain Disease

, Volume 33, Issue 6, pp 2031–2038 | Cite as

Astrogliosis and decreased neural viability as consequences of early consumption of aspartame and acesulfame potassium in male Wistar rats

  • Anayelly Solis-Medina
  • José Jaime Martínez-Magaña
  • Valeria Quintanar-Jurado
  • Ileana Gallegos-Silva
  • Isela E. Juárez-Rojop
  • Carlos Alfonso Tovilla-Zárate
  • Juan C Díaz-Zagoya
  • Yazmín Hernández-Díaz
  • Thelma Beatriz González-Castro
  • María Lilia López-Narváez
  • Alma Delia Genis-Mendoza
  • Humberto Nicolini
Original Article

Abstract

Artificial sweeteners are mainly used as substitutes for sucrose derivates. In this study, we analyzed if the chronic consumption of aspartame or acesulfame potassium at an early age, produces histological alterations, astrogliosis and decreased neuronal viability, in hippocampus, prefrontal cortex, amygdala and hypothalamus of male Wistar rats. A histological analysis was performed on male Wistar rats that consumed aspartame or acesulfame potassium during 90 days, initiating the consumption of sweeteners immediately after weaning. The evaluation of neuronal morphology in different areas of the brain was performed with hematoxylin - eosin staining. To measure astrogliosis and neuronal viability, we used the immunohistochemical technique, with the glial fibrillary acidic protein immunomodulators (GFAP) and with neuronal-specific enolase (NSE). The consumption of aspartame or acesulfame potassium promoted morphological changes of neurons including increased pyknotic nuclei and vacuolization in all the brain areas studied. In hippocampus, prefrontal cortex, amygdala and hypothalamus, astrogliosis and reduction of neural viability were observed in sweeteners consumers in comparison with the control group. Chronic consumption of ASP and ACK from early stages of development and during long periods, may promote neural modifications, astrogliosis and decrease neuronal viability in prefrontal cortex, amygdala, hippocampus, and hypothalamus.

Keywords

Aspartame Acesulfame potassium Histological analysis Astrogliosis Neural viability 

References

  1. Adaramoye OA, Akanni OO (2016) Effects of long-term administration of aspartame on biochemical indices, lipid profile and redox status of cellular system of male rats. J Basic Clin Physiol Pharmacol 27:29–37.  https://doi.org/10.1515/jbcpp-2014-0130 CrossRefPubMedGoogle Scholar
  2. Adjene JO, Ezeoke JC, Nwose EU (2010) Histological effects of chronic consumption of soda pop drinks on kidney of adult Wister rats. N Am J Med Sci 2:215–217.  https://doi.org/10.4297/najms.2010.2215 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alouani S, Ketchum S, Rambosson C, Eistetter HR (1993) Transcriptional activity of the neuron-specific enolase (NSE) promoter in murine embryonic stem (ES) cells and preimplantation embryos. Eur J Cell Biol 62:324–332PubMedGoogle Scholar
  4. Andreev DE, O'Connor PB, Zhdanov AV, Dmitriev RI, Shatsky IN, Papkovsky DB, Baranov PV (2015) Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20 minutes. Genome Biol 16:90.  https://doi.org/10.1186/s13059-015-0651-z CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ashok I, Sheeladevi R (2014) Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain. Redox Biol 2:820–831.  https://doi.org/10.1016/j.redox.2014.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ashok I, Sheeladevi R, Wankhar D (2015) Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain. J Biomed Res 29:390–396.  https://doi.org/10.7555/JBR.28.20120118 CrossRefPubMedGoogle Scholar
  7. Bergstrom BP, Cummings DR, Skaggs TA (2007) Aspartame decreases evoked extracellular dopamine levels in the rat brain: an in vivo voltammetry study. Neuropharmacology 53:967–974.  https://doi.org/10.1016/j.neuropharm.2007.09.009 CrossRefPubMedGoogle Scholar
  8. Burke MV, Small DM (2015) Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiol Behav 152:381–388.  https://doi.org/10.1016/j.physbeh.2015.05.036 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Castillo X, Rosafio K, Wyss MT, Drandarov K, Buck A, Pellerin L, Weber B, Hirt L (2015) A probable dual mode of action for both L- and D-lactate neuroprotection in cerebral ischemia. J Cerebral Blood Flow Metab 35:1561–1569.  https://doi.org/10.1038/jcbfm.2015.115 CrossRefGoogle Scholar
  10. Cherubini E, Miles R (2015) The CA3 region of the hippocampus: how is it? What is it for? How does it do it? Front Cell Neurosci 9.  https://doi.org/10.3389/fncel.2015.00019
  11. Christian B, McConnaughey K, Bethea E, Brantley S, Coffey A, Hammond L, Harrell S, Metcalf K, Muehlenbein D, Spruill W, Brinson L, McConnaughey M (2004) Chronic aspartame affects T-maze performance, brain cholinergic receptors and Na+,K+-ATPase in rats. Pharmacol Biochem Behav 78:121–127.  https://doi.org/10.1016/j.pbb.2004.02.017 CrossRefPubMedGoogle Scholar
  12. Cong WN, Wang R, Cai H, Daimon CM, Scheibye-Knudsen M, Bohr VA, Turkin R, Wood WH, Becker KG, Moaddel R, Maudsley S, Martin B (2013) Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice. PLoS One 8:e70257.  https://doi.org/10.1371/journal.pone.0070257 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Coulombe RA Jr, Sharma RP (1986) Neurobiochemical alterations induced by the artificial sweetener aspartame (NutraSweet). Toxicol Appl Pharmacol 83:79–85CrossRefGoogle Scholar
  14. Cunningham RT et al (1991) Serum neurone specific enolase (NSE) levels as an indicator of neuronal damage in patients with cerebral infarction. Eur J Clin Investig 21:497–500CrossRefGoogle Scholar
  15. Cunningham RT et al (1996) Serum neurone-specific enolase as an indicator of stroke volume. Eur J Clin Investig 26:298–303CrossRefGoogle Scholar
  16. Dills WL,J (1989) Sugar alcohols as bulk sweeteners. Annu Rev Nutr 9:161–186.  https://doi.org/10.1146/annurev.nu.09.070189.001113 CrossRefPubMedGoogle Scholar
  17. Eluwa MA, Inyangmme II, Akpantah AO, Ekanem TB, Ekong MB, Asuquo OR, Nwakanma AA (2013) A comparative study of the effect of diet and soda carbonated drinks on the histology of the cerebellum of adult female albino Wistar rats. Afr Health Sci 13:541–545.  https://doi.org/10.4314/ahs.v13i3.1 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fernstrom JD (2015) Non-nutritive sweeteners and obesity. Annu Rev Food Sci Technol 6:119–136.  https://doi.org/10.1146/annurev-food-022814-015635 CrossRefPubMedGoogle Scholar
  19. Fernstrom JD, Fernstrom MH, Gillis MA (1983) Acute effects of aspartame on large neutral amino acids and monoamines in rat brain. Life Sci 32:1651–1658CrossRefGoogle Scholar
  20. van Hall G, Stømstad M, Rasmussen P, Jans Ø, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29:1121–1129.  https://doi.org/10.1038/jcbfm.2009.35 CrossRefPubMedGoogle Scholar
  21. Hernandez MR, Miao H, Lukas T (2008) Astrocytes in glaucomatous optic neuropathy. Prog Brain Res 173:353–373.  https://doi.org/10.1016/s0079-6123(08)01125-4 CrossRefPubMedGoogle Scholar
  22. Ikonomidou C et al (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science (New York, NY) 287:1056–1060CrossRefGoogle Scholar
  23. Kim JY, Kim N, Yenari MA (2015) Mechanisms and potential therapeutic applications of microglial activation after brain injury. CNS Neurosci Ther 21:309–319.  https://doi.org/10.1111/cns.12360 CrossRefPubMedGoogle Scholar
  24. Kuk JL, Brown RE (2016) Aspartame intake is associated with greater glucose intolerance in individuals with obesity. Appl Physiol Nutr Metab 41:795–798.  https://doi.org/10.1139/apnm-2015-0675 CrossRefPubMedGoogle Scholar
  25. Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89:1092–1100.  https://doi.org/10.1111/j.1471-4159.2004.02420.x CrossRefPubMedGoogle Scholar
  26. Lindseth GN, Coolahan SE, Petros TV, Lindseth PD (2014) Neurobehavioral effects of aspartame consumption. Research Nurs Health 37:185–193.  https://doi.org/10.1002/nur.21595 CrossRefGoogle Scholar
  27. Loane DJ, Kumar A (2016) Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp Neurol 275(Pt 3):316–327.  https://doi.org/10.1016/j.expneurol.2015.08.018 CrossRefPubMedGoogle Scholar
  28. Nakazawa K et al (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science (New York, NY) 297:211–218.  https://doi.org/10.1126/science.1071795 CrossRefGoogle Scholar
  29. Olney JW, Farber NB, Spitznagel E, Robins LN (1996) Increasing brain tumor rates: is there a link to aspartame? J Neuropathol Exp Neurol 55:1115–1123CrossRefGoogle Scholar
  30. Olney JW, Tenkova T, Dikranian K, Qin YQ, Labruyere J, Ikonomidou C (2002) Ethanol-induced apoptotic neurodegeneration in the developing C57BL/6 mouse brain brain research. Dev Brain Res 133:115–126CrossRefGoogle Scholar
  31. Omar SM (2009) Effect of aspartame on the frontal cortex of adult male albino rats. A light and electron microscopic study. Egypt J Histol 32:346–357Google Scholar
  32. Pan-Hou H, Suda Y, Ohe Y, Sumi M, Yoshioka M (1990) Effect of aspartame on N-methyl-D-aspartate-sensitive L-[3H]glutamate binding sites in rat brain synaptic membranes. Brain Res 520:351–353CrossRefGoogle Scholar
  33. Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204:428–437.  https://doi.org/10.1002/path.1645 CrossRefPubMedGoogle Scholar
  34. Pekny M, Leveen P, Pekna M, Eliasson C, Berthold CH, Westermark B, Betsholtz C (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14:1590–1598CrossRefGoogle Scholar
  35. Pepino MY (2015) Metabolic effects of non-nutritive sweeteners. Physiol Behav 152:450–455.  https://doi.org/10.1016/j.physbeh.2015.06.024 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Reid AE, Chauhan BF, Rabbani R, Lys J, Copstein L, Mann A, Abou-Setta AM, Fiander M, MacKay DS, McGavock J, Wicklow B, Zarychanski R, Azad MB (2016) Early exposure to nonnutritive sweeteners and long-term metabolic health: a systematic review. Pediatrics 137:e20153603.  https://doi.org/10.1542/peds.2015-3603 CrossRefPubMedGoogle Scholar
  37. Sawada Y, Konno A, Nagaoka J, Hirai H (2016) Inflammation-induced reversible switch of the neuron-specific enolase promoter from Purkinje neurons to Bergmann glia. Sci Rep 6:27758.  https://doi.org/10.1038/srep27758 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sengupta P (2013) The laboratory rat: relating its age with Human's. Int J Prev Med 4:624–630PubMedPubMedCentralGoogle Scholar
  39. Sharma RP, Coulombe RA Jr (1987) Effects of repeated doses of aspartame on serotonin and its metabolite in various regions of the mouse brain. Food Chemical Toxicol 25:565–568CrossRefGoogle Scholar
  40. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35.  https://doi.org/10.1007/s00401-009-0619-8 CrossRefPubMedGoogle Scholar
  41. Yardimoglu M, Ilbay G, Dalcik C, Dalcik H, Sahin D, Ates N (2008) Immunocytochemistry of neuron specific enolase (NSE) in the rat brain after single and repeated epileptic seizures. Int J Neurosci 118:981–993.  https://doi.org/10.1080/00207450701769232 CrossRefPubMedGoogle Scholar
  42. Yokogoshi H, Roberts CH, Caballero B, Wurtman RJ (1984) Effects of aspartame and glucose administration on brain and plasma levels of large neutral amino acids and brain 5-hydroxyindoles. Am J Clin Nutr 40:1–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anayelly Solis-Medina
    • 1
  • José Jaime Martínez-Magaña
    • 1
  • Valeria Quintanar-Jurado
    • 2
  • Ileana Gallegos-Silva
    • 1
  • Isela E. Juárez-Rojop
    • 3
  • Carlos Alfonso Tovilla-Zárate
    • 4
  • Juan C Díaz-Zagoya
    • 5
  • Yazmín Hernández-Díaz
    • 6
  • Thelma Beatriz González-Castro
    • 6
  • María Lilia López-Narváez
    • 7
  • Alma Delia Genis-Mendoza
    • 1
    • 8
  • Humberto Nicolini
    • 1
    • 8
  1. 1.Laboratorio de Genómica de Enfermedades Psiquiátricas y NeurodegenerativasInstituto Nacional de Medicina GenómicaCiudad de MéxicoMexico
  2. 2.Laboratorio de Histología y Microscopía LHiMInstituto Nacional de Medicina GenómicaCiudad de MéxicoMexico
  3. 3.División Académica de Ciencias de la SaludUniversidad Juárez Autónoma de TabascoVillahermosaMexico
  4. 4.División Académica Multidisciplinaria de ComalcalcoUniversidad Juárez Autónoma de TabascoComalcalcoMexico
  5. 5.División de Investigación, Departamento de Bioquímica, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  6. 6.División Académica Multidisciplinaria de Jalpa de MéndezUniversidad Juárez Autónoma de TabascoJalpa de MéndezMexico
  7. 7.Hospital General de Yajalón. Secretaría de SaludYajalónMexico
  8. 8.Servicios de Atención Psiquiátrica, Secretaría de SaludCiudad de MéxicoMexico

Personalised recommendations