Skip to main content

Advertisement

Log in

Nicotinamide reverses behavioral impairments and provides neuroprotection in 3˗nitropropionic acid induced animal model ofHuntington’s disease: implication of oxidative stress˗ poly(ADP˗ ribose) polymerase pathway

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is characterized by cognitive and psychiatric impairment caused by neuronal degeneration in the brain. Several studies have supported the hypothesis that oxidative stress is the main pathogenic factor in HD. The current study aims to determine the possible neuroprotective effects of nicotinamide on 3-nitropropionic acid (3-NP) induced HD. Male Wistar albino rats were divided into six groups. Group I was the vehicle-treated control, group II received 3-NP (20 mg/kg, intraperitoneally (i.p.) for 4 days, group III received nicotinamide (500 mg/kg, i.p.). The remaining groups received a combination of 3-NP plus nicotinamide 100, 300 or 500 mg/kg, i.p. respectively for 8 days. Afterward, the motor function and hind paw activity in the limb withdrawal were tested; rats were then euthanized for biochemical and histopathological analyses. Treatment of rats with 3-NP altered the motor function, elevated oxidative stress and caused significant histopathological changes in the brain. The treatment of rats with nicotinamide (100, 300 and 500 mg/kg) improved the motor function tested by locomotor activity test, movement analysis, and limb withdrawal test, which was associated with decreased oxidative stress markers (malondialdehyde, nitrites) and increased antioxidant enzyme (glutathione) levels. In addition, nicotinamide treatment decreased lactate dehydrogenase and prevented neuronal death in the striatal region. Our study, therefore, concludes that antioxidant drugs like nicotinamide might slow progression of clinical HD and may improve the motor functions in HD patients. To the best of our knowledge, this study is the first to explore the neuroprotective effects of nicotinamide on 3-NP-induced HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson DW, Bradbury KA, Schneider JS (2008) Broad neuroprotective profile of nicotinamide in different mouse models of MPTP-induced parkinsonism. Eur J Neurosci 28:610–617

    Article  CAS  Google Scholar 

  • Andreassen OA, Dedeoglu A, Stanojevic V, Hughes DB, Browne SE, Leech CA, Ferrante RJ, Habener JF, Beal MF, Thomas MK (2002) Huntington's disease of the endocrine pancreas: insulin deficiency and diabetes mellitus due to impaired insulin gene expression. Neurobiol Dis 11:410–424

    Article  CAS  Google Scholar 

  • Aziz NA, van der Burg JM, Landwehrmeyer GB, Brundin P, Stijnen T, Group ES, Roos RA (2008) Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 71:1506–1513

    Article  CAS  Google Scholar 

  • Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4192

    Article  CAS  Google Scholar 

  • Behrens MI, Koh J, Canzoniero LM, Sensi SL, Csernansky CA, Choi DW (1995) 3-Nitropropionic acid induces apoptosis in cultured striatal and cortical neurons. Neuroreport 6:545–548

    Article  CAS  Google Scholar 

  • Belenky P, Bogan KL, Brenner C (2007) NAD+ metabolism in health and disease. Trends Biochem Sci 32:12–19

    Article  CAS  Google Scholar 

  • Beneke S, Burkle A, (2004) Poly(ADP-ribosyl)ation, PARP, and aging, Sci aging knowledge environ, 2004:re9

    Article  Google Scholar 

  • Bhateja DK, Dhull DK, Gill A, Sidhu A, Sharma S, Reddy BV, Padi SS (2012) Peroxisome proliferator-activated receptor-alpha activation attenuates 3-nitropropionic acid induced behavioral and biochemical alterations in rats: possible neuroprotective mechanisms. Eur J Pharmacol 674:33–43

    Article  CAS  Google Scholar 

  • Bogan KL, Brenner C (2008) Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr 28:115–130

    Article  CAS  Google Scholar 

  • Borlongan CV, Koutouzis TK, Sanberg PR (1997) 3-Nitropropionic acid animal model and Huntington's disease. Neurosci Biobehav Rev 21:289–293

    Article  CAS  Google Scholar 

  • Burkle A, Diefenbach J, Brabeck C, Beneke S (2005) Ageing and PARP. Pharmacol Res 52:93–99

    Article  Google Scholar 

  • Chidambaram SB, Vijayan R, Sekar S, Mani S, Rajamani B, Ganapathy R (2017) Simultaneous blockade of NMDA receptors and PARP-1 activity synergistically alleviate immunoexcitotoxicity and bioenergetics in 3-nitropropionic acid intoxicated mice: evidences from memantine and 3-aminobenzamide interventions. Eur J Pharmacol 803:148–158

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 17:1143–1151

    Article  CAS  Google Scholar 

  • Fricker RA, Green EL, Jenkins SI, Griffin SM (2018) The influence of nicotinamide on health and disease in the central nervous system. Int J Tryptophan Res 11:1178646918776658

    Article  Google Scholar 

  • Gil-Mohapel J, Brocardo PS, Christie BR (2014) The role of oxidative stress in Huntington's disease: are antioxidants good therapeutic candidates? Curr Drug Targets 15:454–468

    Article  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  Google Scholar 

  • Hauck AK, Bernlohr DA (2016) Oxidative stress and lipotoxicity. J Lipid Res 57:1976–1986

    Article  CAS  Google Scholar 

  • Higdon A, Diers AR, Oh JY, Landar A, Darley-Usmar VM (2012) Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J 442:453–464

    Article  CAS  Google Scholar 

  • Jamwal S, Kumar P (2016) Spermidine ameliorates 3-nitropropionic acid (3-NP)-induced striatal toxicity: possible role of oxidative stress, neuroinflammation, and neurotransmitters. Physiol Behav 155:180–187

    Article  CAS  Google Scholar 

  • Jia H, Li X, Gao H, Feng Z, Li X, Zhao L, Jia X, Zhang H, Liu J (2008) High doses of nicotinamide prevent oxidative mitochondrial dysfunction in a cellular model and improve motor deficit in a Drosophila model of Parkinson's disease. J Neurosci Res 86:2083–2090

    Article  CAS  Google Scholar 

  • Kauppinen TM, Swanson RA (2007) The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience 145:1267–1272

    Article  CAS  Google Scholar 

  • Kim Y, Kim YS, Noh MY, Lee H, Joe B, Kim HY, Kim J, Kim SH, Park J (2017) Neuroprotective effects of a novel poly (ADP-ribose) polymerase-1 inhibitor, JPI-289, in hypoxic rat cortical neurons. Clin Exp Pharmacol Physiol 44:671–679

    Article  CAS  Google Scholar 

  • Klaidman L, Morales M, Kem S, Yang J, Chang ML, Adams JD Jr (2003) Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function. Pharmacology 69:150–157

    Article  CAS  Google Scholar 

  • Kumar P, Kumar A (2009) Possible role of sertraline against 3-nitropropionic acid induced behavioral, oxidative stress and mitochondrial dysfunctions in rat brain. Prog Neuro-Psychopharmacol Biol Psychiatry 33:100–108

    Article  CAS  Google Scholar 

  • Kumar A, Ratan RR (2016) Oxidative stress and Huntington's disease: the good. The Bad, and The Ugly, J Huntingtons Dis 5:217–237

    Article  Google Scholar 

  • Kumar P, Padi SS, Naidu PS, Kumar A (2007) Cyclooxygenase inhibition attenuates 3-nitropropionic acid-induced neurotoxicity in rats: possible antioxidant mechanisms. Fundam Clin Pharmacol 21:297–306

    Article  CAS  Google Scholar 

  • Kumar P, Kalonia H, Kumar A (2010) Protective effect of sesamol against 3-nitropropionic acid-induced cognitive dysfunction and altered glutathione redox balance in rats. Basic Clin Pharmacol Toxicol 107:577–582

    Article  CAS  Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    Article  CAS  Google Scholar 

  • Lalic NM, Maric J, Svetel M, Jotic A, Stefanova E, Lalic K, Dragasevic N, Milicic T et al (2008) Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch Neurol 65:476–480

    Article  Google Scholar 

  • Liu D, Pitta M, Jiang H, Lee JH, Zhang G, Chen X, Kawamoto EM, Mattson MP (2013) Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol Aging 34:1564–1580

    Article  CAS  Google Scholar 

  • Love S, Barber R, Wilcock GK (1999) Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. Brain 122(Pt 2):247–253

    Article  Google Scholar 

  • Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M (1991) 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18:492–498

    Article  CAS  Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522

    Article  CAS  Google Scholar 

  • Mock JT, Chaudhari K, Sidhu A, Sumien N (2017) The influence of vitamins E and C and exercise on brain aging. Exp Gerontol 94:69–72

    Article  CAS  Google Scholar 

  • Mokudai T, Ayoub IA, Sakakibara Y, Lee EJ, Ogilvy CS, Maynard KI (2000) Delayed treatment with nicotinamide (vitamin B(3)) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in Wistar rats. Stroke 31:1679–1685

    Article  CAS  Google Scholar 

  • Morales J, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, Gao J, Boothman DA (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24:15–28

    Article  CAS  Google Scholar 

  • Nam E-J, Lee Y-J, Oh Y-A, Jung J-A, Im H-I, Koh S-E, Maeng S-H, Joo W-S et al (2003) Involvement of oxidative stress and poly(ADP-ribose) polymerase activation in 3-Nitropropionic acid-induced cytotoxicity in human neuroblastoma cells. Korean J Physiol Pharmacol 7:325–331

    CAS  Google Scholar 

  • Nony PA, Scallet AC, Rountree RL, Ye X, Binienda Z (1999) 3-Nitropropionic acid (3-NPA) produces hypothermia and inhibits histochemical labeling of succinate dehydrogenase (SDH) in rat brain. Metab Brain Dis 14:83–94

    Article  CAS  Google Scholar 

  • Olsen C, Rustad A, Fonnum F, Paulsen RE, Hassel B (1999) 3-Nitropropionic acid: an astrocyte-sparing neurotoxin in vitro. Brain Res 850:144–149

    Article  CAS  Google Scholar 

  • Pallos J, Bodai L, Lukacsovich T, Purcell JM, Steffan JS, Thompson LM, Marsh JL (2008) Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum Mol Genet 17:3767–3775

    Article  CAS  Google Scholar 

  • Park SD, Kim CG, Kim MG (1983) Inhibitors of poly(ADP-ribose) polymerase enhance DNA strand breaks, excision repair, and sister chromatid exchanges induced by alkylating agents. Environ Mutagen 5:515–525

    Article  Google Scholar 

  • Paulsen JS, Ready RE, Hamilton JM, Mega MS, Cummings JL (2001) Neuropsychiatric aspects of Huntington's disease. J Neurol Neurosurg Psychiatry 71:310–314

    Article  CAS  Google Scholar 

  • Sanberg PR, Fibiger HC (1979) Body weight, feeding, and drinking behaviors in rats with kainic acid-induced lesions of striatal neurons--with a note on body weight symptomatology in Huntington's disease. Exp Neurol 66:444–466

    Article  CAS  Google Scholar 

  • Scallet AC, Nony PL, Rountree RL, Binienda ZK (2001) Biomarkers of 3-nitropropionic acid (3-NPA)-induced mitochondrial dysfunction as indicators of neuroprotection. Ann N Y Acad Sci 939:381–392

    Article  CAS  Google Scholar 

  • Scallet AC, Haley RL, Scallet DM, Duhart HM, Binienda ZK (2003) 3-nitropropionic acid inhibition of succinate dehydrogenase (complex II) activity in cultured Chinese hamster ovary cells: antagonism by L-carnitine. Ann N Y Acad Sci 993:305–312 discussion 345-309

    Article  CAS  Google Scholar 

  • Schulz JB, Henshaw DR, MacGarvey U, Beal MF (1996) Involvement of oxidative stress in 3-nitropropionic acid neurotoxicity. Neurochem Int 29:167–171

    Article  CAS  Google Scholar 

  • Silva-Palacios A, Ostolga-Chavarria M, Buelna-Chontal M, Garibay C, Hernandez-Resendiz S, Roldan FJ, Flores PL, Luna-Lopez A et al (2017) 3-NP-induced Huntington's-like disease impairs Nrf2 activation without loss of cardiac function in aged rats. Exp Gerontol 96:89–98

    Article  CAS  Google Scholar 

  • Spector R (1979) Niacin and niacinamide transport in the central nervous system. In vivo studies, J Neurochem 33:895–904

    Article  CAS  Google Scholar 

  • Stoica BA, Loane DJ, Zhao Z, Kabadi SV, Hanscom M, Byrnes KR, Faden AI (2014) PARP-1 inhibition attenuates neuronal loss, microglia activation and neurological deficits after traumatic brain injury. J Neurotrauma 31:758–772

    Article  Google Scholar 

  • Sumien N, Chaudhari K, Sidhu A, Forster MJ (2013) Does phytoestrogen supplementation affect cognition differentially in males and females? Brain Res 1514:123–127

    Article  CAS  Google Scholar 

  • Surjana D, Halliday GM, Damian DL (2010) Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J Nucleic Acids 2010:157591. https://doi.org/10.4061/2010/157591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tariq M, Khan HA, Elfaki I, Al Deeb S, Al Moutaery K (2005) Neuroprotective effect of nicotine against 3-nitropropionic acid (3-NP)-induced experimental Huntington's disease in rats. Brain Res Bull 67:161–168

    Article  CAS  Google Scholar 

  • Tunez I, Tasset I, Perez-De La Cruz V, Santamaria A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington's disease: past, present and future. Molecules 15:878–916

    Article  CAS  Google Scholar 

  • Turunc Bayrakdar E, Uyanikgil Y, Kanit L, Koylu E, Yalcin A (2014) Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Abeta(1-42)-induced rat model of Alzheimer's disease. Free Radic Res 48:146–158

    Article  CAS  Google Scholar 

  • Vinther-Jensen T, Larsen IU, Hjermind LE, Budtz-Jorgensen E, Nielsen TT, Norremolle A, Nielsen JE, Vogel A (2014) A clinical classification acknowledging neuropsychiatric and cognitive impairment in Huntington's disease. Orphanet J Rare Dis 9:114–122

    Article  Google Scholar 

  • Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    Article  CAS  Google Scholar 

  • Vis JC, Verbeek MM, De Waal RM, Ten Donkelaar HJ, Kremer HP (1999) 3-Nitropropionic acid induces a spectrum of Huntington's disease-like neuropathology in rat striatum. Neuropathol Appl Neurobiol 25:513–521

    Article  CAS  Google Scholar 

  • Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel JP, Faull RL (2015) The neuropathology of Huntington's disease. Curr Top Behav Neurosci 22:33–80

    Article  CAS  Google Scholar 

  • Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667–676

    Article  CAS  Google Scholar 

  • Wullner U, Young AB, Penney JB, Beal MF (1994) 3-Nitropropionic acid toxicity in the striatum. J Neurochem 63:1772–1781

    Article  CAS  Google Scholar 

  • Zhu Y, Zhao KK, Tong Y, Zhou YL, Wang YX, Zhao PQ, Wang ZY (2016) Exogenous NAD(+) decreases oxidative stress and protects H2O2-treated RPE cells against necrotic death through the up-regulation of autophagy. Sci Rep 6:26322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Sidhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidhu, A., Diwan, V., Kaur, H. et al. Nicotinamide reverses behavioral impairments and provides neuroprotection in 3˗nitropropionic acid induced animal model ofHuntington’s disease: implication of oxidative stress˗ poly(ADP˗ ribose) polymerase pathway. Metab Brain Dis 33, 1911–1921 (2018). https://doi.org/10.1007/s11011-018-0297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0297-0

Keywords

Navigation