Metabolic Brain Disease

, Volume 33, Issue 5, pp 1649–1660 | Cite as

Impact of swimming exercise on inflammation in medullary areas of sympathetic outflow control in spontaneously hypertensive rats

  • Andrea V. Maglione
  • Patrícia Taranto
  • Bruno Hamermesz
  • Janaina S. Souza
  • Eduardo M. Cafarchio
  • Cristiana A. Ogihara
  • Rui M. B. Maciel
  • Gisele Giannocco
  • Monica A. SatoEmail author
Original Article


Exercise reduces sympathetic activity (SA), arterial pressure and heart rate in spontaneously hypertensive rats (SHR). Exercise increases oxidative stress (OS) and inflammation is implicated in the generation of reactive oxygen species (ROS) and progression of hypertension. To unravel these effects of exercise and considering that SA is driven by medullary areas, we hypothesized that swimming exercise (SW) affects the gene expression (g.e.) of proteins involved in inflammation and OS in the commissural Nucleus of the Solitary Tract (cNTS) and Rostral ventrolateral medulla (RVLM), which control the sympathetic outflow in SHR. We used male SHR and Wistar rats (14-16wks-old) which were maintained sedentary (SED) or submitted to SW (1 h/day, 5 days/wk./6wks). The g.e. of cycloxygenase-2 (COX-2), interleukin 6 (IL-6), interleukin 10 (IL-10), AT-1 receptor (AT-1r), neuroglobin (Ngb) and cytoglobin (Ctb) in cNTS and RVLM was carried out by qPCR. We observed that COX-2 g.e. increased in SW-SHR in cNTS and RVLM compared to SED-SHR. The IL-6 g.e. reduced in RVLM in SW-SHR, whereas IL-10 g.e. increased in SW-SHR in comparison to SED-SHR. The AT-1r g.e. decreased in SW-SHR in cNTS and RVLM compared to SED-SHR. The Ngb and Ctb g.e. in cNTS neurons increased in SHR and Wistar rats submitted to SW compared to SED, but only Ctb g.e. increased in RVLM in SW-SHR and Wistar in comparison to SED. Therefore, the SW altered the g.e. in cNTS and RVLM for reducing the inflammation and ROS formation, which is increased particularly in SHR, consequently decreasing the OS.


Inflammation Reactive oxygen species Nucleus tractus solitarius Rostral ventrolateral medulla SHR Exercise 



We thank PIBIC-CNPq for the scholarship to Patricia Taranto and Andrea Maglione, Sao Paulo State Research Foundation - FAPESP (grant#2010/50351-6) and Nucleo de Estudos Pesquisa e Assessoria a Saude -NEPAS for the grant support.

Compliance with ethical standards


The authors declare no conflicts of interest to disclose.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353:668–670. CrossRefPubMedGoogle Scholar
  2. Allen AM (2001) Blockade of angiotensin AT1-receptors in the rostral ventrolateral medulla of spontaneously hypertensive rats reduces blood pressure and sympathetic nerve discharge. J Renin-Angiotensin-Aldosterone Syst 2(1_suppl):S120–S124. CrossRefPubMedGoogle Scholar
  3. Antao ST, Duong TT, Aran R, Witting PK (2010) Neuroglobin overexpression in cultured human neuronal cells protects against hydrogen peroxide insult via activating phosphoinositide-3 kinase and opening the mitochondrial K(ATP) channel. Antioxid Redox Signal 13:769–781CrossRefPubMedGoogle Scholar
  4. Bailey DM, Davies B, Young IS, Jackson MJ, Davison GW, Isaacson R, Richardson RS (2003) EPR spectroscopic detection of free radical outflow from an isolated muscle bed in exercising humans. J Appl Physiol 94(5):1714–1718. CrossRefPubMedGoogle Scholar
  5. Baptista S, Piloto N, Reis F, Teixeira-de-Lemos E, Garrido AP, Dias A, Lourenço M, Palmeiro A, Ferrer-Antunes C, Teixeira F (2008) Treadmill running and swimming imposes distinct cardiovascular physiological adaptations in the rat: focus on serotonergic and sympathetic nervous systems modulation. Acta Physiol Hung 95(4):365–381. CrossRefPubMedGoogle Scholar
  6. Bourassa EA, Sved AF, Speth RC (2010) Anteroposterior distribution of AT(1) angiotensin receptors in caudal brainstem cardiovascular regulatory centers of the rat. Brain Res 1306:69–76. CrossRefPubMedGoogle Scholar
  7. Burmester T, Hankeln T (2009) What is the function of neuroglobin? J Exp Biol 212:1423–1428. CrossRefPubMedGoogle Scholar
  8. Calvello R, Lofrumento DD, Perrone MG, Cianciulli A, Salvatore R, Vitale P, De Nuccio F, Giannotti L, Nicolardi G, Panaro MA, Scilimati A (2017) Highly selective cyclooxygenase-1 inhibitors P6 and mofezolac counteract inflammatory state both in vitro and in vivo models of neuroinflammation. Front Neurol 8:251. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chinkin AS (2013) The effects of various swimming protocols on cardiac capacity and ventricular fibrillation threshold in rats. Cent Eur J Sport Sci Med 2(2):9–14Google Scholar
  10. Choi SH, Aid S, Bosetti F (2009) The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol Sci 30:174–181. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ciriello J, Hochstenbach S, Roder S (1994) Central projections of baroreceptor and chemoreceptor afferent fibers in the rat. In: IRA B (ed) Nucleus of the solitary tract. CRC. P., Boca Raton, pp 35–50Google Scholar
  12. Davies KJ, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205. CrossRefPubMedGoogle Scholar
  13. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673. CrossRefPubMedGoogle Scholar
  14. Dupont AG, Brouwers S (2010) Brain angiotensin peptides regulate sympathetic tone and blood pressure.J Hypertens. 28(8):1599–1610. CrossRefPubMedGoogle Scholar
  15. Engelhardt B, Vajkoczy P, Weller RO (2017) The movers and shapers in immune privilege of the CNS. Nat Immunol 18:123–131. CrossRefPubMedGoogle Scholar
  16. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8(9):1254–1266. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fordel E, Geuens E, Dewilde S, Rottiers P, Carmeliet P, Grooten J, Moens L (2004) Cytoglobin expression is upregulated in all tissues upon hypoxia: an in vitro and in vivo study by quantitative real-time PCR. Biochem Biophys Res Commun 319(2):342–348. CrossRefPubMedGoogle Scholar
  18. Fordel E, Thijs L, Moens L, Dewilde S (2007) Neuroglobin and cytoglobin expression in mice: evidence for a correlation with reactive oxygen species scavenging. FEBS J 274:1312–1317. CrossRefPubMedGoogle Scholar
  19. Gambelunghe C, Rossi R, Micheletti A, Mariucci G, Rufini S (2001) Physical exercise intensity can be related to plasma glutathione levels. J Physiol Biochem 57(2):9–14CrossRefPubMedGoogle Scholar
  20. Gilmont RR, Dardano A, Engle JS, Adamson BS, Welsh MJ, Li T, Remick DG, Smith DJ Jr, Rees RS (1996) TNF-alpha potentiates oxidant and reperfusion-induced endothelial cell injury. J Surg Res 61(1):175–182. CrossRefPubMedGoogle Scholar
  21. Gobatto CA, de Mello MA, Sibuya CY, de Azevedo JR, dos Santos LA, Kokubun E (2001) Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol 130(1):21–27CrossRefPubMedGoogle Scholar
  22. Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, Sastre J, Vina J (2008) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 87(1):142–149CrossRefPubMedGoogle Scholar
  23. Graham SH, Hickey RW (2003) Cyclooxygenases in central nervous system diseases: a special role for cyclooxygenase 2 in neuronal cell death. Arch Neurol 60(4):628–630. CrossRefPubMedGoogle Scholar
  24. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346. CrossRefPubMedGoogle Scholar
  25. Hodges NJ, Innocent N, Dhanda S, Graham M (2008) Cellular protection from oxidative DNA damage by over-expression of the novel globin cytoglobin in vitro. Mutagenesis 23(4):293–298. CrossRefPubMedGoogle Scholar
  26. Ikeda M, Matsusaki M, Kinoshita A, Koga M, Ideishi M, Sasaguri M, Tanaka H, Shindo M, Arakawa K (1992) Active and inactive renin after exercise. Eur J Appl Physiol Occup Physiol 65(4):331–334. CrossRefPubMedGoogle Scholar
  27. Jia LL, Kang YM, Wang FX, Li HB, Zhang Y, Yu XJ, Qi J, Suo YP, Tian ZJ, Zhu Z, Zhu GQ, Qin DN (2014) Exercise training attenuates hypertension and cardiac hypertrophy by modulating neurotransmitters and cytokines in hypothalamic paraventricular nucleus. PLoS One 9(1):e85481. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kang YM, Ma Y, Zheng JP, Elks C, Sriramula S, Yang ZM, Francis J (2009a) Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovasc Res 82:503–512. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, Yan N, Guo Z, Francis J (2009b) Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res 83:737–746. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kim JA, Montagnani M, Koh KK, Quon MJ (2006) Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 113(15):1888–1904CrossRefPubMedGoogle Scholar
  31. Kishi T, Hirooka Y (2012) Oxidative stress in the brain causes hypertension via sympathoexcitation. Front Physiol 3:335. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Koshiya N, Guyenet PG (1996) NTS neurons with carotid chemoreceptor inputs arborize in the rostral ventrolateral medulla. Am J Phys 270(6 Pt 2):R1273–R1278Google Scholar
  33. Krieger EM, Da Silva GJ, Negrao CE (2006) Effect of exercise training on baroreflex control of the cardiovascular system. Ann N Y Acad Sci 940:338–347. CrossRefGoogle Scholar
  34. Ledeboer A, Breve JJ, Wierinckx A, van der Jagt S, Bristow AF, Leysen JE, Tilders FJ, Van Dam AM (2002) Expression and regulation of interleukin-10 and interleukin-10 receptor in rat astroglial and microglial cells. Eur J Neurosci 16:1175–1185. CrossRefPubMedGoogle Scholar
  35. Li RC, Morris MW, Lee SK, Pouranfar F, Wang Y, Gozal D (2008) Neuroglobin protects PC12 cells against oxidative stress. Brain Res 1190:159–166. CrossRefPubMedGoogle Scholar
  36. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lobo-Silva D, Carriche GM, Castro AG, Roque S, Saraiva M (2016) Balancing the immune response in the brain: IL-10 and its regulation. J Neuroinflammation 13:297. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mammen PP, Shelton JM, Goetsch SC, Williams SC, Richardson JA, Garry MG, Garry DJ (2002) Neuroglobin, a novel member of the globin family, is expressed in focal regions of the brain. J Histochem Cytochem 50(12):1591–1598. CrossRefPubMedGoogle Scholar
  39. Mazza E, Thakkar-Varia S, Tozzi CA, Neubauer JÁ (2001) Expression of heme oxygenase in the oxygen-sensing regions of the rostral ventrolateral medulla. J Appl Physiol 91(1):379–385CrossRefPubMedGoogle Scholar
  40. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mueller PJ (2007) Exercise training attenuates increases in lumbar sympathetic nerve activity produced by stimulation of the rostral ventrolateral medulla. J Appl Physiol 102(2):803–813. CrossRefPubMedGoogle Scholar
  42. Mueller PJ, Hasser EM (2005) Putative role of the CNTS in alterations in neural control of the circulation following exercise training rats. Am J Physiol Regul Integr Comp Physiol 290:383–392. CrossRefGoogle Scholar
  43. Neto OB, de Sordi CC, da Mota GR, Marocolo M, Chriguer RS, da Silva VJD (2017) Exercise training improves hypertension-induced autonomic dysfunction without influencing properties of peripheral cardiac vagus nerve. Auton Neurosci 208:66–72. CrossRefPubMedGoogle Scholar
  44. Ogihara CA, Schoorlemmer GH, Levada AC, Pithon-Curi TC, Curi R, Lopes OU, Colombari E, Sato MA (2010) Exercise changes regional vascular control by commissural CNTS in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 299(1):R291–R297. CrossRefPubMedGoogle Scholar
  45. Ogihara CA, Schoorlemmer GH, Lazari Mde F, Giannocco G, Lopes OU, Colombari E, Sato MA (2014) Swimming exercise changes hemodynamic responses evoked by blockade of excitatory amino receptors in the rostral ventrolateral medulla in spontaneously hypertensive rats. Biomed Res Int 2014:487129. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Oh T, Tanaka S, Naka T, Igawa S (2016) Effects of high-intensity swimming training on the bones of ovariectomized rats. J Exerc Nutrition Biochem 20(3):39–45CrossRefPubMedPubMedCentralGoogle Scholar
  47. Oleksiewicz U, Liloglou T, Field JK, Xinarianos G (2011) Cytoglobin: biochemical, functional and clinical perspective of the newest member of the globin family. Cell Mol Life Sci 68:3869–3883. CrossRefPubMedGoogle Scholar
  48. Patel PN, Zwibel H (2018) Physiology, exercise. StatPearls Publishing, Treasure Island, FLGoogle Scholar
  49. Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, New YorkGoogle Scholar
  50. Peake JM, Suzuki K, Coombes JS (2007) The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem 18(6):357–371. CrossRefPubMedGoogle Scholar
  51. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 3:499–511. CrossRefGoogle Scholar
  52. Potts JT, Fuchs IE, Li J, Leshnower B, Mitchell JE (1999) Skeletal muscle afferent fibres release substance P in the nucleus tractus solitarii of anesthetized cats. J Physiol 514(3):829–841. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rodrigues MC, Campagnole-Santos MJ, Machado RP, Silva ME, Rocha JL, Ferreira PM, Santos RAS, Alzamora AC (2007) Evidence for a role of AT(2) receptors at the CVLM in the cardiovascular changes induced by low-intensity physical activity in renovascular hypertensive rats. Peptides 28:1375–1382CrossRefPubMedGoogle Scholar
  54. Saavedra JM (2012) Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin Sci 123:567–590CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sato MA, Colombari E, Morrison SF (2002) Inhibition of neurons in commissural nucleus of solitary tract reduces sympathetic nerve activity in SHR. Am J Physiol Heart Circ Physiol 282(5):H1679–H1684. CrossRefPubMedGoogle Scholar
  56. Seo DR, Kim SY, Kim KY, Lee HG, Moon JH, Lee JS, Lee SH, Kim SU, Lee YB (2008) Cross talk between P2 purinergic receptors modulates extracellular ATP-mediated interleukin-10 production in rat microglial cells. Exp Mol Med 40:19–26. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ, Li Q et al (2010) Brain microglial cytokines in neurogenic hypertension. Hypertension 56:297–303. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sousa LE, Magalhães WG, Bezerra FS, Santos RA, Campagnole-Santos MJ, Isoldi MC, Alzamora AC (2015) Exercise training restores oxidative stress and nitric oxide synthases in the rostral ventrolateral medulla of renovascular hypertensive rats. Free Radic Res 49(11):1335–1343. CrossRefPubMedGoogle Scholar
  59. Sturek ML, Bedford TG, Tipton CM, Newcomer L (1984) Acute cardiorespiratory responses of hypertensive rats to swimming and treadmill exercise. J Appl Physiol 57(5):1328–1332CrossRefPubMedGoogle Scholar
  60. Véras-Silva AS, Mattos KC, Gava NS, Brum PC, Negrão CE, Krieger EM (1997) Low-intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats. Am J Phys 273(6 Pt 2):H2627–H2631Google Scholar
  61. Wadley AJ, Veldhuijzen van Zanten JJ, Aldred S (2013) The interactions of oxidative stress and inflammation with vascular dysfunction in ageing: the vascular health triad. Age 35(3):705–718. CrossRefPubMedGoogle Scholar
  62. Werry EL, Liu GJ, Lovelace MD, Nagarajah R, Hickie IB, Bennett MR (2011) Lipopolysaccharide-stimulated interleukin-10 release from neonatal spinal cord microglia is potentiated by glutamate. Neuroscience 175:93–103. CrossRefPubMedGoogle Scholar
  63. Winklewski PJ, Radkowski M, Wszedybyl-Winklewska M, Demkow U (2015) Brain inflammation and hypertension: the chicken or the egg? J Neuroinflammation 12:85. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wu KL, Chan SH, Chan JY (2012) Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation 9:2012. CrossRefGoogle Scholar
  65. Xie LK, Yang SH (2016) Brain globins in physiology and pathology. Med Gas Res 6(3):154–163CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Andrea V. Maglione
    • 1
  • Patrícia Taranto
    • 1
  • Bruno Hamermesz
    • 1
  • Janaina S. Souza
    • 2
  • Eduardo M. Cafarchio
    • 1
  • Cristiana A. Ogihara
    • 1
  • Rui M. B. Maciel
    • 2
  • Gisele Giannocco
    • 2
  • Monica A. Sato
    • 1
    Email author
  1. 1.Department of Morphology and Physiology, Faculdade de Medicina do ABCSanto AndreBrazil
  2. 2.Department of MedicineFederal Univesity of Sao PauloSao PauloBrazil

Personalised recommendations