Advertisement

Metabolic Brain Disease

, Volume 33, Issue 5, pp 1509–1515 | Cite as

Metabolic profile of oxidative stress and trace elements in febrile seizures among children

  • Hosny M. A. El-Masry
  • Abdelrahim A. Sadek
  • Mohammed H. Hassan
  • Hesham H. Ameen
  • Hosny A. Ahmed
Original Article

Abstract

Febrile seizures (FS) are frequent convulsive disorders, occurring in infants and young children. The present study aims to assess and compare the serum levels of oxidative stress markers and some essential trace minerals in FS with normal or abnormal EEG and evaluate the effect of antioxidant therapy on the clinical outcome. This study has been carried out on 80 children with FS (40 with simple FS and 40 with complex FS) and 40 febrile children without seizures. Clinical and EEG findings were recorded for the included patients. Biochemical assays of serum nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), copper (Cu), zinc (Zn) and selenium (Se), using colorimetric methods, were measured in the studied groups. The overall results showed an increased values of NO, MDA and Cu with decreased values of SOD, Zn and Se in patients with FS (simple and complex) in comparison with febrile children without seizures (p < 0.05 for all). Additionally, NO and MDA was increased in complex FS patients with EEG abnormalities in comparison with complex FS with normal EEG findings (p < 0.05); NO and MDA were also significantly decreased after valproate therapy in complex FS patients (p < 0.05 for all). In conclusions, oxidative stress, decreased Zn and Se with increased Cu may play a role in FS. Valproate improves the oxidative stress status in complex FS.

Keywords

Oxidative stress Essential trace minerals Febrile seizures EEG Valproate 

Notes

Compliance with ethical standards

Conflict of interest

None.

References

  1. Abe A, Yamashita S, Noma A (1989) Sensitive, direct colonmetric assay for copper in serum. Clin Chem 35:552–554PubMedGoogle Scholar
  2. Abuhandan M, Solmaz A, Geter S, Kaya C, Guzel B, Yetkin I, Koca B (2014) Evaluation of selenium levels and mean platelet volume in patients with simple febrile convulsion. Iran J Pediatr 24:401–405PubMedPubMedCentralGoogle Scholar
  3. Akarsu S, Yilmaz S, Ozan S, Kurt A, Benzer F, Gurgoze MK (2007) Effects of febrile and afebrile seizures on oxidant state in children. Pediatr Neurol 36:307–311CrossRefGoogle Scholar
  4. American Academy of Pediatrics (2011) Subcommittee on Febrile Seizures. Neurodiagnostic evaluation of the child with a simple febrile seizure. Pediatrics 127:389–394CrossRefGoogle Scholar
  5. Amiri M, Farzin L, Moassesi ME, Sajadi F (2010) Serum trace element levels in febrile convulsion. Biol Trace Elem Res 135:38–44CrossRefGoogle Scholar
  6. Andre VM, Cepeda C, Vinters HV, Huynh M, Mathern GW, Levine MS (2010) Interneurons, GABAA currents, and subunit composition of the GABAA receptor in type I and type II cortical dysplasia. Epilepsia 51:166–170CrossRefGoogle Scholar
  7. Arhan E, Serdaroglu A, Ozturk B, Ozturk HS, Ozcelik A, Kurt N, Kutsal E, Sevinc N (2011) Effects of epilepsy and antiepileptic drugs on nitric oxide, lipid peroxidation and xanthine oxidase system in children with idiopathic epilepsy. Seizure 20:138–142CrossRefGoogle Scholar
  8. Ashrafi MR, Shams S, Nouri M, Mohseni M, Shabanian R, Yekaninejad MS, Chegini N, Khodadad A, Safaralizadeh R (2007) A probable causative factor for an old problem: selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia 48:1750–1755CrossRefGoogle Scholar
  9. Azam M, Shokoufeh A, Khatereh A, Mahnaz M, Shahkarami K, Amin H, Maryam S (2015) Relationship between serum selenium level and febrile seizure in children. J Chem Pharm Res 7:13–18Google Scholar
  10. Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109:33–44CrossRefGoogle Scholar
  11. Bassan H, Barzilay M, Shinnar S, Shorer Z, Matoth I, Gross-Tsur V (2013) Prolonged febrile seizures, clinical characteristics, and acute management. Epilepsia 54:1092–1098CrossRefGoogle Scholar
  12. Chung S (2014) Febrile seizures. Korean J Pediatr 57:384–395CrossRefGoogle Scholar
  13. Delanty N, Dichter MA (1998) Oxidative injury in the nervous system. Acta Neurol Scand 98:145–153CrossRefGoogle Scholar
  14. Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31:326–332PubMedPubMedCentralGoogle Scholar
  15. Ganesh R, Janakiraman L, Meenakshi B (2011) Serum zinc levels are low in children with simple febrile seizures compared with those in children with epileptic seizures and controls. Ann Trop Paediatr 31:345–349CrossRefGoogle Scholar
  16. Gattoo I, Harish R, Quyoom S (2015) Correlation of serum zinc level with simple febrile seizures: A Hospital based Prospective Case Control Study. Int J Pediatr 3:509–515Google Scholar
  17. Gheini S, Kiani A, Sedighei M, Hojabri K (2015) Assessment of serum zinc, selenium and copperin simple febrile convulsions in children aged 6to 60 months in Mohammad Kermanshahi Hospital in 2012. J Kermanshah Univ Med Sci 19:16–23Google Scholar
  18. Gunes S, Dirik E, Yis U, Seckin E, Kuralay F, Kose S, Unalp A (2009) Oxidant status in children after febrile seizures. Pediatr Neurol 40:47–49CrossRefGoogle Scholar
  19. Iyshwarya U, PawanKalyan PS, Suma HR, Prabhavati R, ArunaKumari R (2013) Serum trace elements and oxidative stress marker in children with febrile seizure. J Biomed Sci 2:1–5Google Scholar
  20. Johnsen Q, Eliasson R (1987) Evaluation of a commercially available kit for the colorimetric determination of zinc. Int J Androl 10:435–440CrossRefGoogle Scholar
  21. Mahyar A, Ayazi P, Fallahi M, Javadi A (2010) Correlation between serum selenium level and febrile seizures. Pediatr Neurol 43:331–334CrossRefGoogle Scholar
  22. Muntau AC, Streiter M, Kappler M, Roschinger W, Schmid I, Rehnert A, Schramel P, Roscher AA (2002) Age-related reference values for serum selenium concentrations in infants and children. Clin Chem 48:555–560PubMedGoogle Scholar
  23. Nazıroglu M (2009) Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochem Res 34:2181–2191CrossRefGoogle Scholar
  24. Nishikimi M, Roa NA, Yogi K (1972) Measurement of superoxide dismutase. Biochem Biophys Res Common 46:849–854CrossRefGoogle Scholar
  25. Paya D, Maupoil V, Schott C, Rochette L, Stoclet JC (1995) Temporal relationships between levels of circulating. NO derivatives, vascular NO production and hypo- reactivity tonoradrenaline induced by endotoxin in rats. Cardiovasc Res 30:952–959CrossRefGoogle Scholar
  26. Prasad R, Singh A, Das B, Upadhyay R, Singh T, Mishra O (2009) Cerebrospinal fluid and serum zinc, copper, magnesium and calcium levels in children with Idiopathic seizure. J Clin Diagn Res 3:1841–1846Google Scholar
  27. Saghazadeh A, Mahmoudi M, Meysamie A, Gharedaghi M, Zamponi GW, Rezaei N (2015) Possible role of trace elements in epilepsy andfebrile seizures: a meta-analysis. Nutr Rev 760:73–79Google Scholar
  28. Sapir D, Leitner Y, Harel S, Kraumer U (2000) Unprovoked seizures after complex febrile convulsions. Brain Dev 22:484–486CrossRefGoogle Scholar
  29. Seven M, Basaran SY, Cengiz M, Unal S, Yuksel A (2013) Deficiency of selenium and zinc as a causative factor for idiopathic intractable epilepsy. Epilepsy Res 104:35–39CrossRefGoogle Scholar
  30. Sugai K (2010) Current management of febrile seizures in Japan: an overview. Brain Dev 32:64–70CrossRefGoogle Scholar
  31. Vidyasagar V, Venugopal BL, Darshan MS (2015) Comparison of serum zinc level in patients with simple febrile seizure versus acute febrile illness. Sch J App Med Sci 3:2210–2219Google Scholar
  32. Wallace SJ, Smith JA (1980) Successful prophylaxis against febrile convulsions with valproic acid or phenobarbitone. Br Med J 280:353–354CrossRefGoogle Scholar
  33. Wang J, Feng H, Zhang J, Jiang H (2013) Lithium and valproate acid protect NSC34 cells from H2O2-induced oxidative stress and upregulate expressions of SIRT3 and CARM1. Neuro Endocrinol Lett 34:648–654PubMedGoogle Scholar
  34. Wills E (1969) Lipid peroxide formationin microsomes. Relationship of hydroxylation to lipid peroxide formation. Biochem J 113:333–341CrossRefGoogle Scholar
  35. Wojciak RW, Mojs E, Stanislawska-Kubiak M, Samborski W (2013) The serum zinc, copper, iron, and chromium concentrations inepileptic children. Epilepsy Res 104:40–44CrossRefGoogle Scholar
  36. World Medical Association (2001) World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ 79(4):373–374Google Scholar
  37. Yilmaz D, Balci O (2014) Serum selenium and copperlevels in children with simple febrile seizure andviral infections. Pediatr Practice Res 2:41–45Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PediatricsFaculty of Medicine Al-Azhar University (Assiut Branch)AssiutEgypt
  2. 2.Pediatric Neurology Unit, Department of Pediatrics, Faculty of MedicineSohag UniversitySohagEgypt
  3. 3.Medical Biochemistry and Molecular Biology Department, Qena Faculty of MedicineSouth Valley UniversityQenaEgypt
  4. 4.Clinical Pathology DepartmentFaculty of Medicine Al-Azhar University (Assiut Branch)AssiutEgypt

Personalised recommendations