Skip to main content

Advertisement

Log in

Thymoquinone loaded solid lipid nanoparticles counteracts 3-Nitropropionic acid induced motor impairments and neuroinflammation in rat model of Huntington’s disease

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Defect in gene transcription, excitotoxicity, neuroinflammation and oxidative stress are the dominant disease process that causes striatal cell loss with motor abnormalities in Huntington’s disease (HD). Homogeneous pathological reminiscent of HD was extrapolated in the present study using a potent mitochondrial toxin, 3-Nitropropionic acid (3-NP). Administration of 3-NP for 14 days in the present study portends glial cell activation, N-methyl-D-aspartate (NMDA) receptor stimulation, neuroinflammation and motor deficits. The therapeutic strategy in the present study was improvised by formulating thymoquinone, a biologically active compound into a colloidal carrier namely solid lipid nanoparticles. Treatment with 10 and 20 mg/kg b.w of thymoquinone loaded solid lipid nanoparticles (TQ-SLNs) and 80 mg/kg b.w of thymoquinone suspension (TQ-S) showed a significant (P < 0.01) improvement in ATPases function in 3-NP induced animals than TQ-S (40 mg/kg b.w) treated group. TQ-SLNs (10 and 20 mg/kg) treatment also attenuated the overexpression of glial fibrillary acidic protein (GFAP), pro-inflammatory cytokines and p-p65 NFκB nuclear translocation in 3-NP exposed animals. Further, TQ-SLNs treatment desensitizes NR2B-subtype NMDA receptor, improves tyrosine hydroxylase (TH) immune reactive neurons and ameliorated the motor abnormalities in 3-NP intoxicated animals than TQ-S treated group. Hence, the study signifies that the treatment with lower doses of nanoformulated thymoquinone than thymoquinone suspension can efficiently culminate 3-NP induced HD progression in the striatum of male wistar rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aquib M, Najmi AK, Akthar M (2015) Antidepressant effect of thymoquinone in animal models of depression. Drug Res (Stuttg) 65:490–494

    CAS  Google Scholar 

  • Bedard C, Wallman MJ, Pourcher E, Gould PV, Parent A, Parent M (2011) Serotonin and dopamine striatal innervation in Parkinson’s disease and Huntington’s chorea. Parkinsonism Relat Disord 17:593–598

    Article  PubMed  Google Scholar 

  • Bilney B, Morris ME, Churchyard A, Chiu E, Georgiou-Karistianis N (2005) Evidence for a disorder of locomotor timing in Huntington's disease. Mov Disord 20:51–57

    Article  PubMed  Google Scholar 

  • Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C (2007) Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59:454–477

    Article  CAS  PubMed  Google Scholar 

  • Borges VC, Rocha JBT, Nogueira CW (2005) Effect of diphenyl diselenide, diphenyl ditelluride and ebselenon cerebral Na+K+ATPase activity in rats. Toxicology 215:191–197

    Article  CAS  PubMed  Google Scholar 

  • Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378

    Article  CAS  PubMed  Google Scholar 

  • Carageorgiou H, Pantos C, Zarros A, Stolakis V, Mourouzis I, Cokkinos D, Tsakiris S (2007) Changes in acetylcholinesterase, Na+K+ ATPase, and Mg2+ ATPase activities in the frontal cortex and the hippocampus of hyper and hypothyroid adult rats. Metab Clin Exp 56:1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo E (2003) Dysfunction of wild type huntingtin in Huntington disease. J News Physiol Sci 18:34–37

    CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Cirillo G, Maggio N, Bianco MR, Vollono C, Sellitti S, Papa M (2010) Discriminative behavioral assessment unveils remarkable reactive astrocytosis and early molecular correlates in basal ganglia of 3-nitropropionic acid subchronic treated rats. Neurochem Int 56:152–160

    Article  CAS  PubMed  Google Scholar 

  • Cote SL, Ribeiro-Da-Silva A, Cuello AC (1993) Immunocytochemistry II. John Wiley and Sons, New York

  • Damiano M, Galvan L, Déglon N, Brouillet E (2010) Mitochondria in Huntington's disease. Biochim Biophys Acta 1802:52–61

    Article  CAS  PubMed  Google Scholar 

  • Delval A, Krystkowiak P, Delliaux M, Dujardin K, Blatt JL, Destée A, Derambure P, Defebvre L (2008) Role of attentional resources on gait performance in Huntington’s disease. Mov Disord 23:684–689

    Article  PubMed  Google Scholar 

  • Fernagut PO, Diguet E, Labattu B, Tison F (2002) A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J Neurosci Methods 113:123–130

    Article  PubMed  Google Scholar 

  • Fiske CK, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:376–406

    Google Scholar 

  • Frautschy SA, Cole GM (2009) Bioavailable curcuminoid formulations for treating Alzheimer’s disease and other age-related disorders. United states US:2009/0324703 A1

  • Gilhotra N, Dhingra D (2011) Thymoquinone produced antianxiety-like effects in mice through modulation of GABA and NO levels. Pharmacol Rep 63:660–669

    Article  CAS  PubMed  Google Scholar 

  • Gökce EC, Kahveci R, Gökce A, Cemil B, Aksoy N, Sargon MF, Kısa Ü, Erdoğan B, Güvenç Y, Alagöz F, Kahveci O (2016) Neuroprotective effects of thymoquinone against spinal cord ischemia-reperfusion injury by attenuation of inflammation, oxidative stress, and apoptosis. J Neurosurg Spine 24:949–959

    Article  PubMed  Google Scholar 

  • Hashimoto R, Hough C, Nakazawa T, Yamamoto T, Chuang D-M (2002) Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem 80:589–597

    Article  CAS  PubMed  Google Scholar 

  • HDCRG (The Huntington's Disease Collaborative Research Group) (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • Hjerten S, Pan H (1983) Purification and characterization of two forms of low affinity calcium ion ATPase from erythrocyte membrane. Biochim Biophys Acta 755:457–466

    Article  Google Scholar 

  • Hosseinzadeh H, Parvardeh S (2004) Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds in mice. Phytomedicine 11:56–64

    Article  CAS  PubMed  Google Scholar 

  • Houghton PJ, Zarka R, de las Heras B, Hoult JR (1995) Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leucocytes and membrane lipid peroxidation. Planta Med 61:33–36

    Article  CAS  PubMed  Google Scholar 

  • Ismail N, Ismail M, Abu Bakar MF, Azmi NH, Basri H, Abdullah MA (2016) Modulation of hydrogen peroxide-induced oxidative stress in human neuronal cells by thymoquinone-rich fraction and thymoquinone via transcriptomic regulation of antioxidant and apoptotic signaling genes. Oxid Med Cell Longevity Article ID 2528935:1–15

    Article  CAS  Google Scholar 

  • Jamwal S, Kumar P (2016) Spermidine ameliorates 3-nitropropionic acid (3-NP)-induced striatal toxicity: possible role of oxidative stress, neuroinflammation, and neurotransmitters. Physiol Behav 155:180–187

    Article  CAS  PubMed  Google Scholar 

  • Keyhanmanesh R, Gholamnezhad Z, Boskabady MH (2014) The relaxant effect of Nigella sativa on smooth muscles, its possible mechanisms and clinical applications. Iran J Basic Med Sci 17:939–949

    PubMed  PubMed Central  Google Scholar 

  • Khan A, Vaibhav K, Javed H, Khan MM, Tabassum R, Ahmed ME, Srivastava P, Khuwaja G, Islam F, Siddiqui MS, Shafi MM, Islam F (2012) Attenuation of Abeta-induced neurotoxicity by thymoquinone via inhibition of mitochondrial dysfunction and oxidative stress. Mol Cell Biochem 369:55–65

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kumar A (2009) Possible role of sertraline against 3-nitropropionic acid induced behavioral, oxidative stress and mitochondrial dysfunctions in rat brain. Prog Neuro-Psychopharmacol Biol Psychiatry 33:100–108

    Article  CAS  Google Scholar 

  • Kumar P, Padi SS, Naidu PS, Kumar A (2007) Cyclooxygenase inhibition attenuates 3-nitropropionic acid-induced neurotoxicity in rats: possible antioxidant mechanisms. Fundam Clin Pharmacol 21:297–306

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kalonia H, Kumar A (2010) Possible nitric oxide modulation in protective effect of FK-506 against 3-nitropropionic acid-induced behavioral, oxidative, neurochemical, and mitochondrial alterations in rat brain. Drug Chem Toxicol 33:377–392

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kalonia H, Kumar A (2011) Role of LOX/COX pathways in 3-nitropropionic acid-induced Huntington’s disease-like symptoms in rats: protective effect of licofelone. Br J Pharmacol 164:644–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, Cotman CW, Ames BN (2002) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A 99:2356–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Möller T (2010) Neuroinflammation in Huntington’s disease. J Neural Transm (Vienna) 117:1001–1008

    Article  Google Scholar 

  • Nazari M, Khodadadi H, Fathalizadeh J, Hassanshahi G, Bidaki R, Ayoobi F, Hajebrahimi B, Bagheri F, Arababadi MK (2013) Defective NF-kB transcription factor as the mediator of inflammatory responses: a study on depressed iranian medical students. Clin Lab 59:827–830

    CAS  PubMed  Google Scholar 

  • Novak MJ, Tabrizi SJ (2010) Huntington's disease. BMJ 341:34–40

    Google Scholar 

  • Nowak G, Szewczyk B, Wieronska M (2003) Antidepressant like effects of acute and chronic treatment with zinc in forced swim test and olfactory bulbectomy model in rats. Brain Res Bull 61:159–164

    Article  CAS  PubMed  Google Scholar 

  • Odeh F, Ismail SI, Abu-Dahab R, Mahmoud IS, Al Bawab A (2012) Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer. Drug Deliv 9:371–377

    Article  CAS  Google Scholar 

  • Ohinishi T, Suzuki T, Suzuki Y, Ozawa K (1982) A comparative study of plasma membrane magnesium ion ATPase activities in normal, regenerating and malignant cells. Biochim Biophys Acta 684:67–74

    Article  Google Scholar 

  • Ramachandran S, Thangarajan S (2016) A novel therapeutic application of solid lipid nanoparticles encapsulated thymoquinone (TQ-SLNs) on 3-nitroproponic acid induced Huntington’s disease-like symptoms in wistar rats. Chem Biol Interact 256:25–36

    Article  CAS  PubMed  Google Scholar 

  • Sanui H, Rubin H (1982) The role of magnesium in cell proliferation and transformation. In: Boynton AL, McKochan WL, Whitfield JP (eds) Ions cell proliferation and Cancer, academic press, New York, pp 517–537

    Chapter  Google Scholar 

  • Schreiber E, Harshman K, Kemler I, Malipiero U, Schaffner W (1990) Astrocytes and glioblastoma cells express novel octamer-DNA binding proteins distinct from the ubiquitous Oct-1 and B cell type Oct-2 proteins. Nucleic Acids Res 18:5495–5503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ, Salazar FJ, Abraham C, Kosik KS (1982) Huntington’s disease: changes in striatal proteins reflect astrocytic gliosis. Brain Res 245:117–125

    Article  CAS  PubMed  Google Scholar 

  • Surekha R, Sumathi T (2016) An efficient encapsulation of thymoquinone using solid lipid nanoparticle for brain targeted drug delivery: physicochemical characterization, pharmacokinetics and bio-distribution studies. IJPCR 8:1616–1624

    Google Scholar 

  • Surekha R, Aishwarya V, Sumathi T (2014) Thymoquinone loaded solid lipid nanoparticle: formulation, characterization and in-vitro cell viability assay. Int J Pharm Bio Sci 6:449–464

    Google Scholar 

  • Teunissen CE, Steinbusch HW, Angevaren M, Appels M, de Bruijn C, Prickaerts J, de Vente J (2001) Behavioural correlates of striatal glial fibrillary acidic protein in the 3-nitropropionic acid rat model: disturbed walking pattern and spatial orientation. Neuroscience 105:153–167

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1992) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology 24:145–149

    CAS  PubMed  Google Scholar 

  • Túnez I, Tasset I, Pérez-de la Cruz V, Santamaría A (2010) 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington’s disease: past, present and future. Molecules 15:878–916

    Article  CAS  PubMed  Google Scholar 

  • Vis JC, Verbeek MM, de Waal RM, ten Donkelaar HJ, Kremer B (2001) The mitochondrial toxin 3-nitropropionic acid induces differential expression patterns of apoptosis-related markers in rat striatum. Neuropathol Appl Neurobiol 27:68–76

    Article  CAS  PubMed  Google Scholar 

  • Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, Hayden MR, Raymond LA (2002) Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 33:849–860

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author is grateful to UGC-BSR for the financial support in the form of UGC-JRF Fellowship (Co/Tara/UGC-BSR/Med-Biochem/2015/613 dated 27th October 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumathi Thangarajan.

Ethics declarations

Conflicts of interest

The authors declare that no conflicts of interest exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, S., Thangarajan, S. Thymoquinone loaded solid lipid nanoparticles counteracts 3-Nitropropionic acid induced motor impairments and neuroinflammation in rat model of Huntington’s disease. Metab Brain Dis 33, 1459–1470 (2018). https://doi.org/10.1007/s11011-018-0252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0252-0

Keywords

Navigation