Differential effects of membrane sphingomyelin and cholesterol on agonist-induced bitter taste receptor T2R14 signaling

  • Feroz Ahmed Shaik
  • Prashen ChelikaniEmail author


Membrane lipids regulate the structure and function of G protein-coupled receptors (GPCRs). Previously we have shown that membrane cholesterol regulates the signaling of two human bitter taste receptors (T2Rs), T2R4 and T2R14. Another major plasma membrane lipid known to influence the function of membrane proteins including GPCRs is sphingomyelin. The role of sphingomyelin in T2R function is unexplored thus far. In this work, we examined the significance of sphingomyelin in T2R14 signaling. Results suggest that unavailability of membrane sphingomyelin did not affect the agonist-promoted T2R14 Ca2+ signaling in heterologous expression system and also in primary airway smooth muscle cells (HASM cells). In addition, T2R14 mediated downstream AMPK activation was also unaffected in sphingomyelin-depleted condition; however, cholesterol depletion impaired the T2R14-mediated AMPK activation. Angiotensin II type1A receptor (AT1R) expressed in HASM cells and signals through Ca2+ and AMPK was used as a control. Results suggest that similar to T2R14, membrane sphingomyelin depletion did not affect AT1R signaling. However, membrane cholesterol depletion impaired AT1R mediated Ca2+ signaling and AMPK activation. Interestingly, amino acid sequence analysis revealed the presence of putative sphingolipid binding motif in both T2R14 and AT1R suggesting that the presence of a motif alone might not be suggestive of sphingomyelin sensitivity. In conclusion, these results demonstrate that in contrast to membrane cholesterol, sphingomyelin does not affect the agonist-induced T2R14 signaling, however it may play a role in other aspects of T2R14 function.


Bitter taste receptor (T2R) G protein-coupled receptor (GPCR) Human airway smooth muscle Sphingomyelinase Sphingolipid Cholesterol 



AMP activated protein kinase


Angiotensin II human


Angiotensin II type1 receptor


Mirror version of CRAC motif


Cholesterol recognition amino acid consensus




Half-maximal effective concentration


Flufenamic acid


G protein-coupled receptors


Metabotropic glutamate receptors


Human airway smooth muscle


Half-maximal inhibitory concentration




Phosphorylated amp activated protein kinase


Sphingolipid binding motif




Sweet and umami taste receptors


Bitter taste receptors



This work was supported by a grant from Natural Sciences and Engineering Research Council of Canada (RGPIN-2014-04099) and Cystic Fibrosis Canada operating Grant (491120) to PC, and University of Manitoba Graduate Fellowship to FAS.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Chandrashekar J et al (2006) The receptors and cells for mammalian taste. Nature 444(7117):288–294CrossRefPubMedGoogle Scholar
  2. 2.
    Adler E et al (2000) A novel family of mammalian taste receptors. Cell 100(6):693–702CrossRefPubMedGoogle Scholar
  3. 3.
    Gilbertson TA, Damak S, Margolskee RF (2000) The molecular physiology of taste transduction. Curr Opin Neurobiol 10(4):519–527CrossRefPubMedGoogle Scholar
  4. 4.
    Sainz E et al (2001) Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 77(3):896–903CrossRefPubMedGoogle Scholar
  5. 5.
    Chandrashekar J et al (2000) T2Rs function as bitter taste receptors. Cell 100(6):703–711CrossRefPubMedGoogle Scholar
  6. 6.
    Munk C et al (2016) GPCRdb: the G protein-coupled receptor database—an introduction. Br J Pharmacol 173(14):2195–2207CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jafurulla M, Tiwari S, Chattopadhyay A (2011) Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun 404(1):569–573CrossRefPubMedGoogle Scholar
  8. 8.
    Pydi SP et al (2016) Cholesterol modulates bitter taste receptor function. Biochim Biophys Acta 1858(9):2081–2087CrossRefPubMedGoogle Scholar
  9. 9.
    Baier CJ, Fantini J, Barrantes FJ (2011) Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep 1:69CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Oddi S et al (2011) Functional characterization of putative cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J Neurochem 116(5):858–865CrossRefPubMedGoogle Scholar
  11. 11.
    Bjorkholm P et al (2014) Identification of novel sphingolipid-binding motifs in mammalian membrane proteins. Biochim Biophys Acta 1838(8):2066–2070CrossRefPubMedGoogle Scholar
  12. 12.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572CrossRefPubMedGoogle Scholar
  13. 13.
    Foster LJ, De Hoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100(10):5813–5818CrossRefPubMedGoogle Scholar
  14. 14.
    Sezgin E et al (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18(6):361–374CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19(5):281–296CrossRefPubMedGoogle Scholar
  16. 16.
    Gimpl G (2016) Interaction of G protein coupled receptors and cholesterol. Chem Phys Lipids 199:61–73CrossRefPubMedGoogle Scholar
  17. 17.
    Lonnfors M et al (2011) Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order. Biophys J 100(11):2633–2641CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hla T, Dannenberg AJ (2012) Sphingolipid signaling in metabolic disorders. Cell Metab 16(4):420–434CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huwiler A et al (2000) Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta 1485(2–3):63–99CrossRefPubMedGoogle Scholar
  20. 20.
    Goni FM, Alonso A (2002) Sphingomyelinases: enzymology and membrane activity. FEBS Lett 531(1):38–46CrossRefPubMedGoogle Scholar
  21. 21.
    Jafurulla M et al (2017) Sphingolipids modulate the function of human serotonin1A receptors: insights from sphingolipid-deficient cells. Biochim Biophys Acta 1859(4):598–604CrossRefGoogle Scholar
  22. 22.
    Jafurulla M, Chattopadhyay A (2015) Sphingolipids in the function of G protein-coupled receptors. Eur J Pharmacol 763(Pt B):241–246CrossRefPubMedGoogle Scholar
  23. 23.
    Sjogren B, Svenningsson P (2007) Depletion of the lipid raft constituents, sphingomyelin and ganglioside, decreases serotonin binding at human 5-HT7(a) receptors in HeLa cells. Acta Physiol (Oxf) 190(1):47–53CrossRefGoogle Scholar
  24. 24.
    Harikumar KG et al (2005) Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J Biol Chem 280(3):2176–2185CrossRefPubMedGoogle Scholar
  25. 25.
    Jafurulla M, Pucadyil TJ, Chattopadhyay A (2008) Effect of sphingomyelinase treatment on ligand binding activity of human serotonin1A receptors. Biochim Biophys Acta 1778(10):2022–2025CrossRefPubMedGoogle Scholar
  26. 26.
    Chattopadhyay A et al (2012) Sphingolipid-binding domain in the serotonin(1A) receptor. Adv Exp Med Biol 749:279–293CrossRefPubMedGoogle Scholar
  27. 27.
    Shrivastava S et al (2018) Identification of Sphingolipid-binding Motif in G Protein-coupled Receptors. Adv Exp Med Biol 1112:141–149CrossRefPubMedGoogle Scholar
  28. 28.
    Shaik FA, Medapati MR, Chelikani P (2019) Cholesterol modulates signaling of the chemosensory bitter taste receptor T2R14 in human airway cells. Am J Physiol Lung Cell Mol Physiol 316(1):L45–L57CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang H et al (2015) Structural basis for ligand recognition and functional selectivity at angiotensin receptor. J Biol Chem 290(49):29127–29139CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Veerappan A et al (2008) Mast cell renin and a local renin-angiotensin system in the airway: role in bronchoconstriction. Proc Natl Acad Sci USA 105(4):1315–1320CrossRefPubMedGoogle Scholar
  31. 31.
    Li N et al (2012) Inhibition of angiotensin II-induced contraction of human airway smooth muscle cells by angiotensin-(1-7) via downregulation of the RhoA/ROCK2 signaling pathway. Int J Mol Med 30(4):811–818CrossRefPubMedGoogle Scholar
  32. 32.
    Gosens R et al (2006) Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 291(3):L523–L534CrossRefPubMedGoogle Scholar
  33. 33.
    Chakraborty R et al (2015) Expression of g protein-coupled receptors in Mammalian cells. Methods Enzymol 556:267–281CrossRefPubMedGoogle Scholar
  34. 34.
    Jaggupilli A et al (2019) Chemosensory bitter taste receptors (T2Rs) are activated by multiple antibiotics. FASEB J 33(1):501–517CrossRefPubMedGoogle Scholar
  35. 35.
    Lowry OH et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  36. 36.
    Viswanathan G et al (2018) Macrophage sphingolipids are essential for the entry of mycobacteria. Chem Phys Lipids 213:25–31CrossRefPubMedGoogle Scholar
  37. 37.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
  39. 39.
    Sigrist CJ et al (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41(Database issue):D344–D347PubMedGoogle Scholar
  40. 40.
    Krogh A et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580CrossRefPubMedGoogle Scholar
  41. 41.
    Ikeda M et al (2003) TMPDB: a database of experimentally-characterized transmembrane topologies. Nucleic Acids Res 31(1):406–409CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kim N et al (2017) Angiotensin II affects inflammation mechanisms via AMPK-related signalling pathways in HL-1 atrial myocytes. Sci Rep 7(1):10328CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Eich C et al (2016) Changes in membrane sphingolipid composition modulate dynamics and adhesion of integrin nanoclusters. Sci Rep 6:20693CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gulshan K et al (2013) Sphingomyelin depletion impairs anionic phospholipid inward translocation and induces cholesterol efflux. J Biol Chem 288(52):37166–37179CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Slotte JP, Bierman EL (1988) Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochem J 250(3):653–658CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Aureli M et al (2016) Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chem Phys Lipids 200:94–103CrossRefPubMedGoogle Scholar
  47. 47.
    Liu L et al (2016) Activation of AMPK alpha2 inhibits airway smooth muscle cells proliferation. Eur J Pharmacol 791:235–243CrossRefPubMedGoogle Scholar
  48. 48.
    Pan Y et al (2018) Activation of AMPK inhibits TGF-beta1-induced airway smooth muscle cells proliferation and its potential mechanisms. Sci Rep 8(1):3624CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ushio-Fukai M et al (2001) Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem 276(51):48269–48275CrossRefPubMedGoogle Scholar
  50. 50.
    Oh YB et al (2011) Caveolae are essential for angiotensin II type 1 receptor-mediated ANP secretion. Peptides 32(7):1422–1430CrossRefPubMedGoogle Scholar
  51. 51.
    Burger K, Gimpl G, Fahrenholz F (2000) Regulation of receptor function by cholesterol. Cell Mol Life Sci 57(11):1577–1592CrossRefPubMedGoogle Scholar
  52. 52.
    Lu T et al (2010) Regulation of coronary arterial BK channels by caveolae-mediated angiotensin II signaling in diabetes mellitus. Circ Res 106(6):1164–1173CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhang Z et al (2014) The angiotensin II type 1 receptor (AT1R) closely interacts with large conductance voltage- and Ca2+-activated K+ (BK) channels and inhibits their activity independent of G-protein activation. J Biol Chem 289(37):25678–25689CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kim KH et al (2018) Cucurbitacin B induces hypoglycemic effect in diabetic mice by regulation of AMP-activated protein kinase alpha and glucagon-like peptide-1 via bitter taste receptor signaling. Front Pharmacol 9:1071CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kusuhara Y et al (2013) Taste responses in mice lacking taste receptor subunit T1R1. J Physiol 591(7):1967–1985CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Manitoba Chemosensory Biology Research Group, Department of Oral Biology, Children’s Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
  2. 2.D319, Manitoba Chemosensory Biology Research Group and Department of Oral BiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations