Advertisement

Molecular and Cellular Biochemistry

, Volume 461, Issue 1–2, pp 183–193 | Cite as

miR-940 regulates the inflammatory response of chondrocytes by targeting MyD88 in osteoarthritis

  • Jian CaoEmail author
  • Zhongxing Liu
  • Limin Zhang
  • Jinlong Li
Article
  • 81 Downloads

Abstract

Osteoarthritis (OA) has been identified to be one of the most prevalent forms of joint disorders, marked with inflammatory immune response that may give rise to several complications including disability. Numbers of investigations have proven that microRNA play a key role in chondrogenesis regulation. Accordingly, the current study was intended to explore more about the potential role of miR-940 in the regulation of immune response, pertaining to osteoarthritis. Our findings indicated miR-940 associated down-regulation in both, the tissue as well as at cellular levels, i.e. chondrocytes that are being induced with IL-1β. However, the expression of MyD88 was found to be opposite. Moreover, our findings indicated that miR-940 targets MyD88 to regulate its expression. The study was based on the proposition that normal human chondrocytes when induced with IL-1β significantly enhanced the level of inflammation along with simultaneous stimulation of NF-κB signaling mechanism. Alternatively, siRNA against MyD88, miR-940 mimic or the NF-κB inhibitor, reversed the effect of IL-1β. The chondrocytes that were transfected with miR-940 inhibitor increased the secretion of inflammatory cytokines and activated NF-κB. Furthermore, the expression of miR-490 was reduced in vivo, which was increased through an injection of lentivirus, to foster the production of necessary cytokines and NF-κB and the down-regulation of MyD88. In conclusion, the pathogenesis of OA can be regulated by miR-940/MyD88 axis, which can be achieved through the combined signaling mechanism of MyD88/NF-κB signaling, induced with the help of IL-1β.

Keywords

Osteoarthritis miR-940 MyD88 NF-κB signaling Inflammatory 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im HJ (2017) Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 5:16044.  https://doi.org/10.1038/boneres.2016.44 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kan HS, Chan PK, Chiu KY, Yan CH, Yeung SS, Ng YL, Shiu KW, Ho T (2019) Non-surgical treatment of knee osteoarthritis. Hong Kong Med J.  https://doi.org/10.12809/hkmj187600 CrossRefPubMedGoogle Scholar
  3. 3.
    Georgiev T, Angelov AK (2019) Modifiable risk factors in knee osteoarthritis: treatment implications. Rheumatol Int.  https://doi.org/10.1007/s00296-019-04290-z CrossRefPubMedGoogle Scholar
  4. 4.
    Pontes-Quero GM, Garcia-Fernandez L, Aguilar MR, San Roman J, Perez Cano J, Vazquez-Lasa B (2019) Active viscosupplements for osteoarthritis treatment. Semin Arthritis Rheum.  https://doi.org/10.1016/j.semarthrit.2019.02.008 CrossRefPubMedGoogle Scholar
  5. 5.
    Brown S, Kumar S, Sharma B (2019) Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater.  https://doi.org/10.1016/j.actbio.2019.03.010 CrossRefPubMedGoogle Scholar
  6. 6.
    Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D (2019) Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol.  https://doi.org/10.1016/j.bcp.2019.02.036 CrossRefPubMedGoogle Scholar
  7. 7.
    Paik J, Duggan ST, Keam SJ (2019) Triamcinolone acetonide extended-release: a review in osteoarthritis pain of the knee. Drugs 79:455–462.  https://doi.org/10.1007/s40265-019-01083-3 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Alcaraz MJ, Guillen MI, Ferrandiz ML (2019) Emerging therapeutic agents in osteoarthritis. Biochem Pharmacol.  https://doi.org/10.1016/j.bcp.2019.02.034 CrossRefPubMedGoogle Scholar
  9. 9.
    Herrero-Beaumont G, Perez-Baos S, Sanchez-Pernaute O, Roman-Blas JA, Lamuedra A, Largo R (2019) Targeting chronic innate inflammatory pathways, the main road to prevention of osteoarthritis progression. Biochem Pharmacol.  https://doi.org/10.1016/j.bcp.2019.02.030 CrossRefPubMedGoogle Scholar
  10. 10.
    Tu C, He J, Wu B, Wang W, Li Z (2019) An extensive review regarding the adipokines in the pathogenesis and progression of osteoarthritis. Cytokine 113:1–12.  https://doi.org/10.1016/j.cyto.2018.06.019 CrossRefPubMedGoogle Scholar
  11. 11.
    Persson MSM, Stocks J, Walsh DA, Doherty M, Zhang W (2018) The relative efficacy of topical non-steroidal anti-inflammatory drugs and capsaicin in osteoarthritis: a network meta-analysis of randomised controlled trials. Osteoarthr Cartil 26:1575–1582.  https://doi.org/10.1016/j.joca.2018.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sun L, Zhou J, Sun C (2019) MicroRNA-211-5p enhances analgesic effect of dexmedetomidine on inflammatory visceral pain in rats by suppressing ERK signaling. J Mol Neurosci.  https://doi.org/10.1007/s12031-019-01278-z CrossRefPubMedGoogle Scholar
  13. 13.
    Li P, Wang G, Zhang XL, He GL, Luo X, Yang J, Luo Z, Shen TT, Yang XS (2019) MicroRNA-155 promotes heat stress-induced inflammation via targeting liver X receptor alpha in microglia. Front Cell Neurosci 13:12.  https://doi.org/10.3389/fncel.2019.00012 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fan Y, Che X, Hou K, Zhang M, Wen T, Qu X, Liu Y (2018) MiR-940 promotes the proliferation and migration of gastric cancer cells through up-regulation of programmed death ligand-1 expression. Exp Cell Res 373:180–187.  https://doi.org/10.1016/j.yexcr.2018.10.011 CrossRefPubMedGoogle Scholar
  15. 15.
    Gu GM, Zhan YY, Abuduwaili K, Wang XL, Li XQ, Zhu HG, Liu CL (2018) MiR-940 inhibits the progression of NSCLC by targeting FAM83F. Eur Rev Med Pharmacol Sci 22:5964–5971.  https://doi.org/10.26355/eurrev_201809_15927 CrossRefPubMedGoogle Scholar
  16. 16.
    Scotece M, Conde J, Abella V, Lopez V, Francisco V, Ruiz C, Campos V, Lago F, Gomez R, Pino J, Gualillo O (2018) Oleocanthal inhibits catabolic and inflammatory mediators in LPS-activated human primary osteoarthritis (OA) chondrocytes through MAPKs/NF-kappaB pathways. Cell Physiol Biochem 49:2414–2426.  https://doi.org/10.1159/000493840 CrossRefPubMedGoogle Scholar
  17. 17.
    Lu C, Li Y, Hu S, Cai Y, Yang Z, Peng K (2018) Scoparone prevents IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes through the PI3K/Akt/NF-kappaB pathway. Biomed Pharmacother 106:1169–1174.  https://doi.org/10.1016/j.biopha.2018.07.062 CrossRefPubMedGoogle Scholar
  18. 18.
    Shankar E, Weis MC, Avva J, Shukla S, Shukla M, Sreenath SN, Gupta S (2019) Complex systems biology approach in connecting PI3K-Akt and NF-kappaB pathways in prostate cancer. Cells.  https://doi.org/10.3390/cells8030201 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759.  https://doi.org/10.1038/nri1703 CrossRefPubMedGoogle Scholar
  20. 20.
    Taniguchi K, Karin M (2018) NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18:309–324.  https://doi.org/10.1038/nri.2017.142 CrossRefPubMedGoogle Scholar
  21. 21.
    Yang L, Hu X, Mo YY (2019) Acidosis promotes tumorigenesis by activating AKT/NF-kappaB signaling. Cancer Metastasis Rev.  https://doi.org/10.1007/s10555-019-09785-6 CrossRefPubMedGoogle Scholar
  22. 22.
    Sun SC (2017) The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol 17:545–558.  https://doi.org/10.1038/nri.2017.52 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Espin-Palazon R, Traver D (2016) The NF-kappaB family: key players during embryonic development and HSC emergence. Exp Hematol 44:519–527.  https://doi.org/10.1016/j.exphem.2016.03.010 CrossRefPubMedGoogle Scholar
  24. 24.
    Lian WS, Ko JY, Wu RW, Sun YC, Chen YS, Wu SL, Weng LH, Jahr H, Wang FS (2018) MicroRNA-128a represses chondrocyte autophagy and exacerbates knee osteoarthritis by disrupting Atg12. Cell Death Dis 9:919.  https://doi.org/10.1038/s41419-018-0994-y CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhao Y, Chen B, Li S, Yang L, Zhu D, Wang Y, Wang H, Wang T, Shi B, Gai Z, Yang J, Heng X, Yang J, Zhang L (2018) Detection and characterization of bacterial nucleic acids in culture-negative synovial tissue and fluid samples from rheumatoid arthritis or osteoarthritis patients. Sci Rep 8:14305.  https://doi.org/10.1038/s41598-018-32675-w CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    O’Brien MS, McDougall JJ (2019) Age and frailty as risk factors for the development of osteoarthritis. Mech Ageing Dev 180:21–28.  https://doi.org/10.1016/j.mad.2019.03.003 CrossRefPubMedGoogle Scholar
  27. 27.
    Kim C, Keating A (2019) Cell therapy for knee osteoarthritis: mesenchymal stromal cells. Gerontology.  https://doi.org/10.1159/000496605 CrossRefPubMedGoogle Scholar
  28. 28.
    Osani MC, Bannuru RR (2019) Efficacy and safety of duloxetine in osteoarthritis: a systematic review and meta-analysis. Korean J Intern Med.  https://doi.org/10.3904/kjim.2018.460 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Teymouri S, Baghdar HN, Yousefi M, Salari R (2019) Analgesic herbal medicines in treatment of knee osteoarthritis: a systematic review. Curr Rheumatol Rev.  https://doi.org/10.2174/1573397115666190328150203 CrossRefPubMedGoogle Scholar
  30. 30.
    Xie J, Huang Z, Yu X, Zhou L, Pei F (2019) Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine Growth Factor Rev.  https://doi.org/10.1016/j.cytogfr.2019.03.004 CrossRefPubMedGoogle Scholar
  31. 31.
    Weber ANR, Cardona Gloria Y, Cinar O, Reinhardt HC, Pezzutto A, Wolz OO (2018) Oncogenic MYD88 mutations in lymphoma: novel insights and therapeutic possibilities. Cancer Immunol Immunother 67:1797–1807.  https://doi.org/10.1007/s00262-018-2242-9 CrossRefPubMedGoogle Scholar
  32. 32.
    Wang L, Yu K, Zhang X, Yu S (2018) Dual functional roles of the MyD88 signaling in colorectal cancer development. Biomed Pharmacother 107:177–184.  https://doi.org/10.1016/j.biopha.2018.07.139 CrossRefPubMedGoogle Scholar
  33. 33.
    Lee YK, Kang M, Choi EY (2017) TLR/MyD88-mediated innate immunity in intestinal graft-versus-host disease. Immune Netw 17:144–151.  https://doi.org/10.4110/in.2017.17.3.144 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi SM, Nabavi SF (2017) Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev 36:11–19.  https://doi.org/10.1016/j.arr.2017.02.004 CrossRefPubMedGoogle Scholar
  35. 35.
    Ntoufa S, Vilia MG, Stamatopoulos K, Ghia P, Muzio M (2016) Toll-like receptors signaling: a complex network for NF-kappaB activation in B-cell lymphoid malignancies. Semin Cancer Biol 39:15–25.  https://doi.org/10.1016/j.semcancer.2016.07.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Echizen K, Hirose O, Maeda Y, Oshima M (2016) Inflammation in gastric cancer: interplay of the COX-2/prostaglandin E2 and Toll-like receptor/MyD88 pathways. Cancer Sci 107:391–397.  https://doi.org/10.1111/cas.12901 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rigoglou S, Papavassiliou AG (2013) The NF-kappaB signalling pathway in osteoarthritis. Int J Biochem Cell Biol 45:2580–2584.  https://doi.org/10.1016/j.biocel.2013.08.018 CrossRefPubMedGoogle Scholar
  38. 38.
    Quan R, Huang Z, Yue Z, Xin D, Yang D, Pan J, Zhang L (2013) Effects of a proteasome inhibitor on the NF-kappaB signalling pathway in experimental osteoarthritis. Scand J Rheumatol 42:400–407.  https://doi.org/10.3109/03009742.2013.776101 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OrthopedicsAffiliated Hospital of Chifeng UniversityChifengChina
  2. 2.Department of OphthalmologyAffiliated Hospital of Chifeng UniversityChifengChina

Personalised recommendations