Advertisement

Molecular and Cellular Biochemistry

, Volume 461, Issue 1–2, pp 171–182 | Cite as

The ATPase BRG1/SMARCA4 is a protein interaction platform that recruits BAF subunits and the transcriptional repressor REST/NRSF in neural progenitor cells

  • Sakthidasan Jayaprakash
  • Srdja Drakulic
  • Zongpei Zhao
  • Bjoern Sander
  • Monika M. GolasEmail author
Article

Abstract

The BAF complex (SWI/SNF) is an ATP-dependent chromatin remodeler that adapts the structural organization of the chromatin. Despite a growing understanding of the composition of BAF in different cell types, the interaction network within the BAF complex is poorly understood. Here, we characterized an isoform of the BRG1/SMARCA4 ATPase expressed in human neural progenitor cells. By electron microscopy and image processing, the neural BRG1/SMARCA4 shows an elongated globular structure, which provides a considerably larger surface than anticipated. We show that neural BRG1/SMARCA4 binds to BAF57/SMARCE1 and BAF60A/SMARCD1, two further components of BAF. Moreover, we demonstrate an interaction between the neural BRG1/SMARCA4 isoform and the central neurodevelopmental transcriptional repressor REST/NRSF. Our results provide insights into the assembly of a central transcriptional repressor complex, link the structure of the neural BRG1/SMARCA4 to its role as a protein–protein interaction platform and suggest BRG1/SMARCA4 as a key determinant that directs the BAF complex to specific DNA sites by interacting with transcription factors and regulators.

Keywords

BRG1/SMARCA4 REST/NRSF BAF SWI/SNF Protein–protein interaction Neural progenitor cells 

Abbreviations

aa

Amino acid

BAF

Brahma/Brahma-related gene 1-associated factor

BRG1

Brahma-related gene 1

BRM

Brahma

bp

Base pair

CE

Cytoplasmic extract

CoREST

REST corepressor

FBS

Fetal bovine serum

HMG

High mobility group

IPTG

Isopropyl β-d-1-thiogalactopyranoside

kDa

Kilodalton

LB

Lysogeny broth

NE

Nuclear extract

NPCs

Neural progenitor cells

NRSF

Neuron-restrictive silencer factor

PAGE

Polyacrylamide gel electrophoresis

PMSF

Phenyl methane sulfonyl fluoride

P/S

Penicillin/streptomycin

RE1

Repressor element 1

REST

Repressor element 1 silencing transcription factor

SANT

Swi3, Ada2, N-Cor, TFIIIB

SIN3

Switch independent 3

SWI/SNF

Switch/sucrose non-fermentable

SDS

Sodium dodecyl sulfate

TBE

Tris/borate/EDTA

X-Gal

5-Bromo-4-chloro-3-indolyl-β-d-galactopyranoside

YFP

Yellow fluorescent protein

ZF

Zinc finger

Notes

Acknowledgements

We wish to thank Juan Yuan for RNA extraction. We are grateful to Golshah Ayoubi and Susanne N. Stubbe for technical assistance, and acknowledge access to the laboratory facilities at the Danish Neuroscience Center House, Aarhus. This work has been supported by the Lundbeck Foundation’s Fellowship program, the Sapere Aude Program of the Danish Council for Independent Research, the Danish Cancer Society, the Carlsberg Foundation, the A.P. Møller Foundation for the Advancement of Medical Sciences, the Fabrikant Einar Willumsens Mindelegat and the Helga og Peter Kornings Fond to M.M.G.

Author contributions

MMG designed the study; all authors performed experiments; SJ, BS, and MMG analyzed and interpreted data; MMG wrote the manuscript; SJ, SD, and BS contributed to the manuscript; and all authors approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest related to this study.

Supplementary material

11010_2019_3600_MOESM1_ESM.pdf (83 kb)
Supplementary material 1 (PDF 84 kb)

References

  1. 1.
    Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR (1994) Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370:477–481.  https://doi.org/10.1038/370477a0 CrossRefPubMedGoogle Scholar
  2. 2.
    Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, Crabtree GR (2013) Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 45:592–601.  https://doi.org/10.1038/ng.2628 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sevenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O (1999) Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet 65:1342–1348.  https://doi.org/10.1086/302639 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y, Hibi-Ko Y, Kaname T, Naritomi K, Kawame H, Wakui K, Fukushima Y, Homma T, Kato M, Hiraki Y, Yamagata T, Yano S, Mizuno S, Sakazume S, Ishii T, Nagai T, Shiina M, Ogata K, Ohta T, Niikawa N, Miyatake S, Okada I, Mizuguchi T, Doi H, Saitsu H, Miyake N, Matsumoto N (2012) Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nat Genet 44:376–378.  https://doi.org/10.1038/ng.2219 CrossRefPubMedGoogle Scholar
  5. 5.
    Santen GW, Aten E, Sun Y, Almomani R, Gilissen C, Nielsen M, Kant SG, Snoeck IN, Peeters EA, Hilhorst-Hofstee Y, Wessels MW, den Hollander NS, Ruivenkamp CA, van Ommen GJ, Breuning MH, den Dunnen JT, van Haeringen A, Kriek M (2012) Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. Nat Genet 44:379–380.  https://doi.org/10.1038/ng.2217 CrossRefPubMedGoogle Scholar
  6. 6.
    Van Houdt JK, Nowakowska BA, Sousa SB, van Schaik BD, Seuntjens E, Avonce N, Sifrim A, Abdul-Rahman OA, van den Boogaard MJ, Bottani A, Castori M, Cormier-Daire V, Deardorff MA, Filges I, Fryer A, Fryns JP, Gana S, Garavelli L, Gillessen-Kaesbach G, Hall BD, Horn D, Huylebroeck D, Klapecki J, Krajewska-Walasek M, Kuechler A, Lines MA, Maas S, Macdermot KD, McKee S, Magee A, de Man SA, Moreau Y, Morice-Picard F, Obersztyn E, Pilch J, Rosser E, Shannon N, Stolte-Dijkstra I, Van Dijck P, Vilain C, Vogels A, Wakeling E, Wieczorek D, Wilson L, Zuffardi O, van Kampen AH, Devriendt K, Hennekam R, Vermeesch JR (2012) Heterozygous missense mutations in SMARCA2 cause Nicolaides–Baraitser syndrome. Nat Genet 44:445–449.  https://doi.org/10.1038/ng.1105 CrossRefPubMedGoogle Scholar
  7. 7.
    Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201–215.  https://doi.org/10.1016/j.neuron.2007.06.019 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hodges C, Kirkland JG, Crabtree GR (2016) The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb Perspect Med.  https://doi.org/10.1101/cshperspect.a026930 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mashtalir N, D’Avino AR, Michel BC, Luo J, Pan J, Otto JE, Zullow HJ, McKenzie ZM, Kubiak RL, St Pierre R, Valencia AM, Poynter SJ, Cassel SH, Ranish JA, Kadoch C (2018) Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175(1272–1288):e20.  https://doi.org/10.1016/j.cell.2018.09.032 CrossRefGoogle Scholar
  10. 10.
    Nie Z, Xue Y, Yang D, Zhou S, Deroo BJ, Archer TK, Wang W (2000) A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol Cell Biol 20:8879–8888CrossRefGoogle Scholar
  11. 11.
    Yan Z, Cui K, Murray DM, Ling C, Xue Y, Gerstein A, Parsons R, Zhao K, Wang W (2005) PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes Dev 19:1662–1667.  https://doi.org/10.1101/gad.1323805 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J, Crabtree GR (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci USA 106:5181–5186.  https://doi.org/10.1073/pnas.0812889106 CrossRefPubMedGoogle Scholar
  13. 13.
    Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460:642–646.  https://doi.org/10.1038/nature08139 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427.  https://doi.org/10.1073/pnas.0511041103 CrossRefPubMedGoogle Scholar
  15. 15.
    Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267:1360–1363CrossRefGoogle Scholar
  16. 16.
    Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957CrossRefGoogle Scholar
  17. 17.
    Wu JI, Lessard J, Olave IA, Qiu Z, Ghosh A, Graef IA, Crabtree GR (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56:94–108.  https://doi.org/10.1016/j.neuron.2007.08.021 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Randazzo FM, Khavari P, Crabtree G, Tamkun J, Rossant J (1994) brg1: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. Dev Biol 161:229–242.  https://doi.org/10.1006/dbio.1994.1023 CrossRefPubMedGoogle Scholar
  19. 19.
    Muchardt C, Yaniv M (1993) A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J 12:4279–4290CrossRefGoogle Scholar
  20. 20.
    Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G, Magnuson T (2000) A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6:1287–1295CrossRefGoogle Scholar
  21. 21.
    Khavari PA, Peterson CL, Tamkun JW, Mendel DB, Crabtree GR (1993) BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366:170–174.  https://doi.org/10.1038/366170a0 CrossRefPubMedGoogle Scholar
  22. 22.
    Machida Y, Murai K, Miyake K, Iijima S (2001) Expression of chromatin remodeling factors during neural differentiation. J Biochem 129:43–49CrossRefGoogle Scholar
  23. 23.
    Phelan ML, Sif S, Narlikar GJ, Kingston RE (1999) Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 3:247–253CrossRefGoogle Scholar
  24. 24.
    Singh M, Popowicz GM, Krajewski M, Holak TA (2007) Structural ramification for acetyl-lysine recognition by the bromodomain of human BRG1 protein, a central ATPase of the SWI/SNF remodeling complex. ChemBioChem 8:1308–1316.  https://doi.org/10.1002/cbic.200600562 CrossRefPubMedGoogle Scholar
  25. 25.
    Shen W, Xu C, Huang W, Zhang J, Carlson JE, Tu X, Wu J, Shi Y (2007) Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails. Biochemistry 46:2100–2110.  https://doi.org/10.1021/bi0611208 CrossRefPubMedGoogle Scholar
  26. 26.
    Liu X, Li M, Xia X, Li X, Chen Z (2017) Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 544:440–445.  https://doi.org/10.1038/nature22036 CrossRefPubMedGoogle Scholar
  27. 27.
    Xia X, Liu X, Li T, Fang X, Chen Z (2016) Structure of chromatin remodeler Swi2/Snf2 in the resting state. Nat Struct Mol Biol 23:722–729.  https://doi.org/10.1038/nsmb.3259 CrossRefPubMedGoogle Scholar
  28. 28.
    Schubert HL, Wittmeyer J, Kasten MM, Hinata K, Rawling DC, Heroux A, Cairns BR, Hill CP (2013) Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler. Proc Natl Acad Sci USA 110:3345–3350.  https://doi.org/10.1073/pnas.1215379110 CrossRefPubMedGoogle Scholar
  29. 29.
    Debril MB, Gelman L, Fayard E, Annicotte JS, Rocchi S, Auwerx J (2004) Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit. J Biol Chem 279:16677–16686.  https://doi.org/10.1074/jbc.M312288200 CrossRefPubMedGoogle Scholar
  30. 30.
    Hsiao PW, Fryer CJ, Trotter KW, Wang W, Archer TK (2003) BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol Cell Biol 23:6210–6220CrossRefGoogle Scholar
  31. 31.
    Surabhi RM, Daly LD, Cattini PA (1999) Evidence for evolutionary conservation of a physical linkage between the human BAF60b, a subunit of SWI/SNF complex, and thyroid hormone receptor interacting protein-1 genes on chromosome 17. Genome 42:545–549PubMedGoogle Scholar
  32. 32.
    Oh J, Sohn DH, Ko M, Chung H, Jeon SH, Seong RH (2008) BAF60a interacts with p53 to recruit the SWI/SNF complex. J Biol Chem 283:11924–11934.  https://doi.org/10.1074/jbc.M705401200 CrossRefPubMedGoogle Scholar
  33. 33.
    Ito T, Yamauchi M, Nishina M, Yamamichi N, Mizutani T, Ui M, Murakami M, Iba H (2001) Identification of SWI.SNF complex subunit BAF60a as a determinant of the transactivation potential of Fos/Jun dimers. J Biol Chem 276:2852–2857.  https://doi.org/10.1074/jbc.M009633200 CrossRefPubMedGoogle Scholar
  34. 34.
    Aras S, Saladi SV, Basuroy T, Marathe HG, Lores P, de la Serna IL (2018) BAF60A mediates interactions between the microphthalmia-associated transcription factor and the BRG1-containing SWI/SNF complex during melanocyte differentiation. J Cell Physiol.  https://doi.org/10.1002/jcp.27840 CrossRefPubMedGoogle Scholar
  35. 35.
    Wang W, Chi T, Xue Y, Zhou S, Kuo A, Crabtree GR (1998) Architectural DNA binding by a high-mobility-group/kinesin-like subunit in mammalian SWI/SNF-related complexes. Proc Natl Acad Sci USA 95:492–498CrossRefGoogle Scholar
  36. 36.
    Kazantseva A, Sepp M, Kazantseva J, Sadam H, Pruunsild P, Timmusk T, Neuman T, Palm K (2009) N-terminally truncated BAF57 isoforms contribute to the diversity of SWI/SNF complexes in neurons. J Neurochem 109:807–818.  https://doi.org/10.1111/j.1471-4159.2009.06005.x CrossRefPubMedGoogle Scholar
  37. 37.
    Battaglioli E, Andres ME, Rose DW, Chenoweth JG, Rosenfeld MG, Anderson ME, Mandel G (2002) REST repression of neuronal genes requires components of the hSWI.SNF complex. J Biol Chem 277:41038–41045.  https://doi.org/10.1074/jbc.M205691200 CrossRefPubMedGoogle Scholar
  38. 38.
    Andres ME, Burger C, Peral-Rubio MJ, Battaglioli E, Anderson ME, Grimes J, Dallman J, Ballas N, Mandel G (1999) CoREST: a functional corepressor required for regulation of neural-specific gene expression. Proc Natl Acad Sci USA 96:9873–9878CrossRefGoogle Scholar
  39. 39.
    Ooi L, Belyaev ND, Miyake K, Wood IC, Buckley NJ (2006) BRG1 chromatin remodeling activity is required for efficient chromatin binding by repressor element 1-silencing transcription factor (REST) and facilitates REST-mediated repression. J Biol Chem 281:38974–38980.  https://doi.org/10.1074/jbc.M605370200 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Gottgens B, Buckley NJ (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci USA 101:10458–10463.  https://doi.org/10.1073/pnas.0401827101 CrossRefPubMedGoogle Scholar
  41. 41.
    Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:645–657.  https://doi.org/10.1016/j.cell.2005.03.013 CrossRefGoogle Scholar
  42. 42.
    Huang Y, Myers SJ, Dingledine R (1999) Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nat Neurosci 2:867–872.  https://doi.org/10.1038/13165 CrossRefPubMedGoogle Scholar
  43. 43.
    Grimes JA, Nielsen SJ, Battaglioli E, Miska EA, Speh JC, Berry DL, Atouf F, Holdener BC, Mandel G, Kouzarides T (2000) The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. J Biol Chem 275:9461–9467CrossRefGoogle Scholar
  44. 44.
    Donato R, Miljan EA, Hines SJ, Aouabdi S, Pollock K, Patel S, Edwards FA, Sinden JD (2007) Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci 8:36.  https://doi.org/10.1186/1471-2202-8-36 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lin L, Yuan J, Sander B, Golas MM (2015) In vitro differentiation of human neural progenitor cells into striatal GABAergic neurons. Stem Cells Transl Med 4:775–788.  https://doi.org/10.5966/sctm.2014-0083 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fitzgerald DJ, Berger P, Schaffitzel C, Yamada K, Richmond TJ, Berger I (2006) Protein complex expression by using multigene baculoviral vectors. Nat Methods 3:1021–1032.  https://doi.org/10.1038/nmeth983 CrossRefPubMedGoogle Scholar
  47. 47.
    Inui K, Zhao Z, Yuan J, Jayaprakash S, Le LTM, Drakulic S, Sander B, Golas MM (2017) Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target. Protein Sci 26:997–1011.  https://doi.org/10.1002/pro.3142 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Golas MM, Jayaprakash S, Le LTM, Zhao Z, Huertas VH, Jensen IS, Yuan J, Sander B (2018) Modulating the expression strength of the baculovirus/insect cell expression system: a toolbox applied to the human tumor suppressor SMARCB1/SNF5. Mol Biotechnol 60:820–832.  https://doi.org/10.1007/s12033-018-0107-2 CrossRefPubMedGoogle Scholar
  49. 49.
    Rai J, Pemmasani JK, Voronovsky A, Jensen IS, Manavalan A, Nyengaard JR, Golas MM, Sander B (2014) Strep-tag II and Twin-Strep based cassettes for protein tagging by homologous recombination and characterization of endogenous macromolecular assemblies in Saccharomyces cerevisiae. Mol Biotechnol 56:992–1003.  https://doi.org/10.1007/s12033-014-9778-5 CrossRefPubMedGoogle Scholar
  50. 50.
    Lin TY, Voronovsky A, Raabe M, Urlaub H, Sander B, Golas MM (2015) Dual tagging as an approach to isolate endogenous chromatin remodeling complexes from Saccharomyces cerevisiae. Biochem Biophys Acta 1854:198–208.  https://doi.org/10.1016/j.bbapap.2014.11.009 CrossRefPubMedGoogle Scholar
  51. 51.
    Sander B, Golas MM (2011) Visualization of bionanostructures using transmission electron microscopical techniques. Microsc Res Tech 74:642–663.  https://doi.org/10.1002/jemt.20963 CrossRefPubMedGoogle Scholar
  52. 52.
    Drakulic S, Rai J, Petersen SV, Golas MM, Sander B (2018) Folding and assembly defects of pyruvate dehydrogenase deficiency-related variants in the E1alpha subunit of the pyruvate dehydrogenase complex. Cell Mol Life Sci 75:3009–3026.  https://doi.org/10.1007/s00018-018-2775-2 CrossRefPubMedGoogle Scholar
  53. 53.
    Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303.  https://doi.org/10.1093/nar/gky427 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sen P, Vivas P, Dechassa ML, Mooney AM, Poirier MG, Bartholomew B (2013) The SnAC domain of SWI/SNF is a histone anchor required for remodeling. Mol Cell Biol 33:360–370.  https://doi.org/10.1128/MCB.00922-12 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496.  https://doi.org/10.1038/20974 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Greenway DJ, Street M, Jeffries A, Buckley NJ (2007) RE1 Silencing transcription factor maintains a repressive chromatin environment in embryonic hippocampal neural stem cells. Stem Cells 25:354–363.  https://doi.org/10.1634/stemcells.2006-0207 CrossRefPubMedGoogle Scholar
  57. 57.
    Sohn DH, Lee KY, Lee C, Oh J, Chung H, Jeon SH, Seong RH (2007) SRG3 interacts directly with the major components of the SWI/SNF chromatin remodeling complex and protects them from proteasomal degradation. J Biol Chem 282:10614–10624.  https://doi.org/10.1074/jbc.M610563200 CrossRefPubMedGoogle Scholar
  58. 58.
    Chen J, Archer TK (2005) Regulating SWI/SNF subunit levels via protein-protein interactions and proteasomal degradation: BAF155 and BAF170 limit expression of BAF57. Mol Cell Biol 25:9016–9027.  https://doi.org/10.1128/MCB.25.20.9016-9027.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Hakimi MA, Bochar DA, Chenoweth J, Lane WS, Mandel G, Shiekhattar R (2002) A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci USA 99:7420–7425.  https://doi.org/10.1073/pnas.112008599 CrossRefPubMedGoogle Scholar
  60. 60.
    Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437:432–435.  https://doi.org/10.1038/nature04021 CrossRefPubMedGoogle Scholar
  61. 61.
    Marino MM, Rega C, Russo R, Valletta M, Gentile MT, Esposito S, Baglivo I, De Feis I, Angelini C, Xiao T, Felsenfeld G, Chambery A, Pedone PV (2019) Interactome mapping defines BRG1, a component of the SWI/SNF chromatin remodeling complex, as a new partner of the transcriptional regulator CTCF. J Biol Chem 294:861–873.  https://doi.org/10.1074/jbc.RA118.004882 CrossRefPubMedGoogle Scholar
  62. 62.
    Souslova T, Miredin K, Millar AM, Albert PR (2017) Recruitment by the repressor Freud-1 of histone deacetylase-Brg1 chromatin remodeling complexes to strengthen HTR1A gene repression. Mol Neurobiol 54:8263–8277.  https://doi.org/10.1007/s12035-016-0306-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiomedicineAarhus UniversityAarhus CDenmark
  2. 2.Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus UniversityAarhus CDenmark
  3. 3.Institute of PathologyHannover Medical SchoolHannoverGermany
  4. 4.Department of Human GeneticsHannover Medical SchoolHannoverGermany

Personalised recommendations