Advertisement

Molecular and Cellular Biochemistry

, Volume 461, Issue 1–2, pp 159–170 | Cite as

Maternal omega-3 fatty acids and vitamin E improve placental angiogenesis in late-onset but not early-onset preeclampsia

  • Vaishali Kasture
  • Deepali Sundrani
  • Surabhi Dalvi
  • Mayur Swamy
  • Anvita Kale
  • Sadhana JoshiEmail author
Article
  • 83 Downloads

Abstract

Abnormal placental vasculature is associated with preeclampsia. Preeclampsia is of two types, i.e., early- and late-onset preeclampsia (LOP), both having different etiologies. We have earlier demonstrated low levels of omega-3 fatty acids and vitamin E in women with preeclampsia. The current study examines the effect of maternal omega-3 fatty acids and vitamin E supplementation on angiogenic factors in a rat model of preeclampsia. Pregnant rats were divided into a total of five groups control, early-onset preeclampsia (EOP); LOP; EOP supplemented with omega-3 fatty acid and vitamin E and LOP supplemented with omega-3 fatty acid and vitamin E. Preeclampsia was induced by administering l-nitroarginine methylester (l-NAME) at the dose of 50 mg/kg body weight/day. The vascular endothelial growth factor gene expression and protein levels were lower (p < 0.01 for both) in animals from both EOP as well as LOP groups (p < 0.01). In the EOP group, the protein levels of VEGF receptor-1 were also lower (p < 0.01). Supplementation of omega-3 fatty acids and vitamin E to LOP improved the levels of VEGF and VEGF receptor-1 only in the LOP but not in the EOP group. In the EOP group, the gene expression of hypoxia inducible factor 1 alpha (HIF-1α) in the placenta was higher (p < 0.05) and supplementation normalized these levels. Our findings indicate that maternal supplementation of omega-3 fatty acids and vitamin E has differential effect on preeclampsia subtypes.

Keywords

Hypoxia inducible factor 1 alpha Omega-3 fatty acids Peroxisome proliferator-activated receptor gamma (PPAR-g) Preeclampsia Vascular endothelial growth factor receptor Vascular endothelial growth factor 

Notes

Funding

Financial support from the Indian Council of Medical Research (ICMR), New Delhi, India (Grant no. 5/7/1069/13-RCH) is gratefully acknowledged. One of the authors (VK) received a fellowship from the Department of Science and Technology, Government of India (INSPIRE fellowship).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Pereira RD, De Long NE, Wang RC, Yazdi FT, Holloway AC et al (2015) Angiogenesis in the placenta: the role of reactive oxygen species signaling. Biomed Res Int 2015:814543.  https://doi.org/10.1155/2015/814543 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cerdeira AS, Karumanchi SA (2012) Angiogenic factors in preeclampsia and related disorders. Cold Spring Harbor Perspect Med 2(11):a006585.  https://doi.org/10.1101/cshperspect.a006585 CrossRefGoogle Scholar
  3. 3.
    Rizov M, Andreeva P, Dimova I (2017) Molecular regulation and role of angiogenesis in reproduction. Taiwan J Obstet Gynecol 56(2):127–132.  https://doi.org/10.1016/j.tjog.2016.06.019 CrossRefPubMedGoogle Scholar
  4. 4.
    Chen DB, Zheng J (2014) Regulation of placental angiogenesis. Microcirculation 21(1):15–25.  https://doi.org/10.1111/micc.12093 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gomathy E, Akurati L, Radhika K (2018) Early onset and late onset preeclampsia-maternal and perinatal outcomes in a rural teritiary health center. Int J Reprod Contracept Obstet Gynecol 7(6):2266–2269CrossRefGoogle Scholar
  6. 6.
    Moldenhauer JS, Stanek J, Warshak C, Khoury J, Sibai B (2003) The frequency and severity of placental findings in women with preeclampsia are gestational age dependent. Am J Obstet Gynecol 189:1173–1177CrossRefGoogle Scholar
  7. 7.
    Sebire NJ, Goldin RD, Regan L (2005) Term preeclampsia is associated with minimal histopathological placental features regardless of clinical severity. J Obstet Gynaecol 25:117–118.  https://doi.org/10.1080/014436105400041396 CrossRefPubMedGoogle Scholar
  8. 8.
    Van der Merwe JL, Hall DR, Wright C, Schubert P, Grove D (2010) Are early and late preeclampsia distinct subclasses of the disease—what does the placenta reveal? Hypertens Pregnancy 29:457–467.  https://doi.org/10.3109/10641950903572282 CrossRefPubMedGoogle Scholar
  9. 9.
    Ogge G, Chaiworapongsa T, Romero R, Hussein Y, Kusanovic JP et al (2011) Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J Perinat Med 39:641–652.  https://doi.org/10.1515/JPM.2011.098 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nikuei P, Malekzadeh K, Rajaei M, Nejatizadeh A, Ghasemi N (2015) The imbalance in expression of angiogenic and anti-angiogenic factors as candidate predictive biomarker in preeclampsia. Iranian J Reprod Med 13(5):251–262Google Scholar
  11. 11.
    Khodzhaeva Z, Kogan E, Kholin A, Akatyeva A, Vavina O et al (2013) PP016. Relation of apoptosis, proliferation and angiogenesis in early and late onset of preeclampsia. Pregnancy Hypertens. 3(2):73.  https://doi.org/10.1016/j.preghy.2013.04.044 CrossRefPubMedGoogle Scholar
  12. 12.
    Tal R (2012) The role of hypoxia and hypoxia-inducible factor-1alpha in preeclampsia pathogenesis. Biol Reprod 87(6):134.  https://doi.org/10.1095/biolreprod.112.102723 CrossRefPubMedGoogle Scholar
  13. 13.
    Zimna A, Kurpisz M (2015) Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int.  https://doi.org/10.1155/2015/549412 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Green DE, Sutliff RL, Hart CM (2011) Is peroxisome proliferator-activated receptor gamma (PPARγ) a therapeutic target for the treatment of pulmonary hypertension? Pulm Circ 1(1):33–47CrossRefGoogle Scholar
  15. 15.
    Mejía-Barradas CM, Del-Río-Navarro BE, Domínguez-López A, Campos-Rodríguez R, Martínez-Godínez MD et al (2014) The consumption of n-3 polyunsaturated fatty acids differentially modulates gene expression of peroxisome proliferator-activated receptor alpha and gamma and hypoxia-inducible factor 1 alpha in subcutaneous adipose tissue of obese adolescents. Endocrine 45(1):98–105.  https://doi.org/10.1007/s12020-013-9941-y CrossRefPubMedGoogle Scholar
  16. 16.
    Kulkarni AV, Mehendale SS, Yadav HR, Kilari AS, Taralekar VS et al (2010) Circulating angiogenic factors and their association with birth outcomes in preeclampsia. Hypertens Res 33(6):561–567.  https://doi.org/10.1038/hr.2010.31 CrossRefPubMedGoogle Scholar
  17. 17.
    Kulkarni AV, Mehendale SS, Yadav HR, Joshi SR (2011) Reduced placental docosahexaenoic acid levels associated with increased levels of sFlt-1 in preeclampsia. Prostaglandins Leukot Essent Fatty Acids 84(1–2):51–55.  https://doi.org/10.1016/j.plefa.2010.09.005 CrossRefPubMedGoogle Scholar
  18. 18.
    Sahay AS, Patil VV, Sundrani DP, Joshi AA, Wagh GN et al (2014) A longitudinal study of circulating angiogenic and antiangiogenic factors and AT1-AA levels in preeclampsia. Hypertens Res 37(8):753–758.  https://doi.org/10.1038/hr.2014.71 CrossRefPubMedGoogle Scholar
  19. 19.
    Sundrani D, Khot V, Pisal H, Mehendale S, Wagh G et al (2013) Gestation dependant changes in angiogenic factors and their associations with fetal growth measures in normotensive pregnancy. PLoS ONE 8(1):e54153.  https://doi.org/10.1371/journal.pone.0054153 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wadhwani N, Patil V, Pisal H, Joshi A, Mehendale S et al (2014) Altered maternal proportions of long chain polyunsaturated fatty acids and their transport leads to disturbed fetal stores in preeclampsia. Prostaglandins Leukot Essent Fatty Acids (PLEFA) 91(1–2):21–30.  https://doi.org/10.1016/j.plefa.2014.05.006 CrossRefGoogle Scholar
  21. 21.
    Mehendale S, Kilari A, Dangat K, Taralekar V, Mahadik S et al (2008) Fatty acids, antioxidants, and oxidative stress in pre-eclampsia. Int J Gynecol Obstet 100(3):234–238CrossRefGoogle Scholar
  22. 22.
    Zingg JM, Azzi A, Meydani M (2015) Induction of VEGF expression by alpha-tocopherol and alpha-tocopheryl phosphate via PI3 Kγ/PKB and hTAP1/SEC14L2-mediated lipid exchange. J Cell Biochem 116(3):398–407.  https://doi.org/10.1002/jcb.24988 CrossRefPubMedGoogle Scholar
  23. 23.
    Rani A, Wadhwani N, Chavan-Gautam P, Joshi S (2016) Altered development and function of the placental regions in preeclampsia and its association with long-chain polyunsaturated fatty acids. Dev Biol 5:582–597.  https://doi.org/10.1002/wdev.238 CrossRefGoogle Scholar
  24. 24.
    Kemse NG, Kale AA, Joshi SR (2016) Supplementation of maternal omega-3 fatty acids to pregnancy induced hypertension Wistar rats improves IL10 and VEGF levels. Prostaglandins Leukot Essent Fatty Acids 104:25–32.  https://doi.org/10.1016/j.plefa.2015.11.003 CrossRefPubMedGoogle Scholar
  25. 25.
    Patten AR, Fontaine CJ, Christie BR (2014) A comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors. Front Paediatr 2:93.  https://doi.org/10.3389/fped.2014.00093 CrossRefGoogle Scholar
  26. 26.
    Kasture V, Dalvi S, Swamy M, Kale A, Joshi S (2019) Omega-3 fatty acids differentially influences embryotoxicity in subtypes of preeclampsia. Clin Exp Hypertens.  https://doi.org/10.1080/10641963.2019.1601208 CrossRefPubMedGoogle Scholar
  27. 27.
    Nandi A, Wadhwani N, Joshi SR (2019) Vitamin D deficiency influences fatty acid metabolism. Prostaglandins Leukot Essent Fatty Acids 140:57–63.  https://doi.org/10.1016/j.plefa.2018.11.014 CrossRefPubMedGoogle Scholar
  28. 28.
    Kemse NG, Kale AA, Joshi SR (2014) A combined supplementation of omega-3 fatty acids and micronutrients (folic acid, vitamin B12) reduces oxidative stress markers in a rat model of pregnancy induced hypertension. PLoS ONE 9(11):e111902.  https://doi.org/10.1371/journal.pone.0111902 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Livingston JC, Chin R, Haddad B, McKinney ET, Ahokas R, Sibai BM (2000) Reductions of vascular endothelial growth factor and placental growth factor concentrations in severe preeclampsia. Am J Obstet Gynecol 183(6):1554–1557CrossRefGoogle Scholar
  30. 30.
    Salimi S, Yaghmaei M, Tabatabaei E, Mokhtari M, Naghavi A (2015) Vascular endothelial growth factor (VEGF)-634G/C polymorphism was associated with severe pre-eclampsia and lower serum VEGF level. J Obstet Gynaecol Res 41(12):1877–1883.  https://doi.org/10.1111/jog.12825 CrossRefPubMedGoogle Scholar
  31. 31.
    Cirpan T, Akercan F, Terek MC et al (2007) Evaluation of VEGF in placental bed biopsies from preeclamptic women by immunohistochemistry. Clin Exp Obstet Gynecol 34(4):228–231PubMedGoogle Scholar
  32. 32.
    Romero R, Nien JK, Espinoza J, Todem D, Fu W et al (2008) A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med 21:9–23.  https://doi.org/10.1080/14767050701830480 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Purwosunu Y, Sekizawa A, Yoshimura S, Farina A, Wibowo N et al (2009) Expression of angiogenesis-related genes in the cellular component of the blood of preeclamptic women. Reprod Sci 16(9):857–864.  https://doi.org/10.1177/1933719109336622 CrossRefPubMedGoogle Scholar
  34. 34.
    Andraweera PH, Dekker GA, Roberts CT (2012) The vascular endothelial growth factor family in adverse pregnancy outcomes. Hum Reprod Update 4:436–457.  https://doi.org/10.1093/humupd/dms011 CrossRefGoogle Scholar
  35. 35.
    Akercan F, Cirpan T, Terek MC, Ozcakir HT, Giray G et al (2008) The immunohistochemical evaluation of VEGF in placenta biopsies of pregnancies complicated by preeclampsia. Arch Gynecol Obstet 277(2):109–114CrossRefGoogle Scholar
  36. 36.
    Miyazawa T, Tsuzuki T, Nakagawa K, Igarashi M (2004) Antiangiogenic potency of vitamin E. Ann N Y Acad Sci 1031(1):401–404CrossRefGoogle Scholar
  37. 37.
    Johnsen GM, Basak S, Weedon-Fekjaer MS, Staff AC, Duttaroy AK (2011) Docosahexaenoic acid stimulates tube formation in first trimester trophoblast cells, HTR8/SVneo. Placenta 32(9):626–632.  https://doi.org/10.1016/j.placenta.2011.06.009 CrossRefPubMedGoogle Scholar
  38. 38.
    Kasimanickam RK, Kasimanickam VR, Rodriguez JS, Pelzer KD, Sponenberg PD et al (2010) Tocopherol induced angiogenesis in placental vascular network in late pregnant ewes. Reprod Biol Endocrinol 8:86.  https://doi.org/10.1186/1477-7827-8-86 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Shibuya M (2011) Involvement of Flt-1 (VEGFR-1) in cancer and preeclampsia. Proc Jpn Acad Ser B 87:167–178CrossRefGoogle Scholar
  40. 40.
    Shibuya M (2013) VEGFR and type-V RTK activation and signaling. Cold Spring Harbor Perspect Biol 5(10):a009092.  https://doi.org/10.1101/cshperspect.a009092 CrossRefGoogle Scholar
  41. 41.
    Figueira RL, Gonçalves FL, Prado AR, Ribeiro MC, Costa KM et al (2018) Ventilation-induced changes correlate to pulmonary vascular response and VEGF, VEGFR-1/2, and eNOS expression in the rat model of postnatal hypoxia. Braz J Med Biol Res 51(11):e7169.  https://doi.org/10.1590/1414-431X20187169 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Herraiz I, Simón E, Gómez-Arriaga PI, Quezada MS, García-Burguillo A et al (2018) Clinical implementation of the sFlt-1/PlGF ratio to identify preeclampsia and fetal growth restriction: a prospective cohort study. Pregnancy Hypertens 13:279–285.  https://doi.org/10.1016/j.preghy.2018.06.017 CrossRefPubMedGoogle Scholar
  43. 43.
    Akhilesh M, Mahalingam V, Nalliah S, Ali RM, Ganesalingam M et al (2014) Participation of hypoxia-inducible factor-1α in the pathogenesis of preeclampsia-related placental ischemia and its potential as a marker for preeclampsia. Biomark Genomic Med 6(3):121–125CrossRefGoogle Scholar
  44. 44.
    Fujii T, Nagamatsu T, Morita K, Schust DJ, Iriyama T et al (2017) Enhanced HIF2α expression during human trophoblast differentiation into syncytiotrophoblast suppresses transcription of placental growth factor. Sci Rep 7(1):12455.  https://doi.org/10.1038/s41598-017-12685-w CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang S, Wang X, Weng Z, Zhang S, Ning H et al (2017) Expression and role of microRNA 18b and hypoxia inducible factor-1α in placental tissues of preeclampsia patients. Exp Ther Med 14(5):4554–4560.  https://doi.org/10.3892/etm.2017.5067 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Iriyama T, Wang W, Parchim NF, Song A, Blackwell SC et al (2015) Hypoxia-independent upregulation of placental hypoxia inducible factor-1α gene expression contributes to the pathogenesis of preeclampsia. Hypertension 65(6):1307–1315.  https://doi.org/10.1161/hypertensionaha.115.05314 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165(3):535–550.  https://doi.org/10.1016/j.cell.2016.03.014 CrossRefPubMedGoogle Scholar
  48. 48.
    Wendling O, Chambon P, Mark M (1999) Retinoid X receptors are essential for early mouse development and placentogenesis. Proc Natl Acad Sci USA 96(2):547–551CrossRefGoogle Scholar
  49. 49.
    Barak Y, Liao D, He W, Ong ES, Nelson MC et al (2002) Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci USA 99(1):303–308CrossRefGoogle Scholar
  50. 50.
    Waite LL, Louie RE, Taylor RN (2005) Circulating activators of peroxisome proliferator-activated receptors are reduced in preeclamptic pregnancy. J Clin Endocrinol Metab 90(2):620–626CrossRefGoogle Scholar
  51. 51.
    Rodie VA, Young A, Jordan F, Sattar N, Greer IA, Freeman DJ (2005) Human placental peroxisome proliferator-activated receptor delta and gamma expression in healthy pregnancy and in preeclampsia and intrauterine growth restriction. J Soc Gynecol Investig 12:320–329CrossRefGoogle Scholar
  52. 52.
    Holdsworth-Carson SJ, Lim R, Mitton A, Whitehead C, Rice GE et al (2010) Peroxisome proliferator-activated receptors are altered in pathologies of the human placenta: gestational diabetes mellitus, intrauterine growth restriction and preeclampsia. Placenta 31(3):222–229.  https://doi.org/10.1016/j.placenta.2009 CrossRefPubMedGoogle Scholar
  53. 53.
    Couet C, Delarue J, Ritz P, Antoine JM, Lamisse F (1997) Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int J Obes 21(8):637–643CrossRefGoogle Scholar
  54. 54.
    Kaplins’kyĭ SP, Shysh AM, Nahibin VS, Dosenko V, Klimashevs’kyĭ VM et al (2009) Omega-3 polyunsaturated fatty acids stimulate the expression of PPAR target genes. Fiziolohichnyi zhurnal 55(2):37–43PubMedGoogle Scholar
  55. 55.
    Wikström AK (2007) Biochemical and epidemiological studies of early-onset and late-onset pre-eclampsia. Dissertation. Acta Universitatis UpsaliensisGoogle Scholar
  56. 56.
    Allen RE, Rogozinska E, Cleverly K, Aquilina J, Thangaratinam S (2014) Abnormal blood biomarkers in early pregnancy are associated with preeclampsia: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 182:194–201.  https://doi.org/10.1016/j.ejogrb.2014.09.027 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA)Bharati Vidyapeeth (Deemed to be University), PunePuneIndia

Personalised recommendations