Advertisement

Selection of optimal reference genes for gene expression studies in chronically hypoxic rat heart

  • Daniel Benak
  • Dita Sotakova-Kasparova
  • Jan Neckar
  • Frantisek Kolar
  • Marketa HlavackovaEmail author
Article

Abstract

Adaptation to chronic hypoxia renders the heart more tolerant to ischemia/reperfusion injury. To evaluate changes in gene expression after adaptation to chronic hypoxia by RT-qPCR, it is essential to select suitable reference genes. In a chronically hypoxic rat model, no specific reference genes have been identified in the myocardium. This study aimed to select the best reference genes in the left (LV) and right (RV) ventricles of chronically hypoxic and normoxic rats. Sprague–Dawley rats were adapted to continuous normobaric hypoxia (CNH; 12% O2 or 10% O2) for 3 weeks. The expression levels of candidate genes were assessed by RT-qPCR. The stability of genes was evaluated by NormFinder, geNorm and BestKeeper algorithms. The best five reference genes in the LV were Top1, Nupl2, Rplp1, Ywhaz, Hprt1 for the milder CNH and Top1, Ywhaz, Sdha, Nupl2, Tomm22 for the stronger CNH. In the RV, the top five genes were Hprt1, Nupl2, Gapdh, Top1, Rplp1 for the milder CNH and Tomm22, Gapdh, Hprt1, Nupl2, Top1 for the stronger CNH. This study provides validation of reference genes in LV and RV of CNH rats and shows that suitable reference genes differ in the two ventricles and depend on experimental protocol.

Keywords

Reference genes RT-qPCR Heart Left ventricle Chronic hypoxia Rat 

Notes

Acknowledgements

This research was funded by CHARLES UNIVERSITY GRANT AGENCY, Grant Number 200317 and GRANT AGENCY OF THE CZECH REPUBLIC, Grant Numbers 16-12420Y and 19-04790Y. We kindly thank Dr. Matus Sotak for help with manuscript editing.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. All procedures have been performed in accordance with the ethical standards and with the approvement of the Ethical Committee of the Institute of Physiology CAS in Prague.

References

  1. 1.
    World Health Organization (2018) The top 10 causes of death. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 17 December 2018
  2. 2.
    Neckar J, Ostadal B, Kolar F (2004) Myocardial infarct size-limiting effect of chronic hypoxia persists for five weeks of normoxic recovery. Physiol Res 53:621–628Google Scholar
  3. 3.
    Kolar F, Ostadal B (2004) Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiol Res 53:S3–13Google Scholar
  4. 4.
    Ostadal B, Kolar F (2007) Cardiac adaptation to chronic high-altitude hypoxia: beneficial and adverse effects. Respir Physiol Neurobiol 158:224–236CrossRefGoogle Scholar
  5. 5.
    Julian GS, Oliveira RW, Tufik S, Chagas JR (2016) Analysis of the stability of housekeeping gene expression in the left cardiac ventricle of rats submitted to chronic intermittent hypoxia. J Bras Pneumol 42:211–214CrossRefGoogle Scholar
  6. 6.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108CrossRefGoogle Scholar
  7. 7.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622CrossRefGoogle Scholar
  8. 8.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–0034.11CrossRefGoogle Scholar
  9. 9.
    Vesentini N, Barsanti C, Martino A, Kusmic C, Ripoli A, Rossi A, L’Abbate A (2012) Selection of reference genes in different myocardial regions of an in vivo ischemia/reperfusion rat model for normalization of antioxidant gene expression. BMC Res Notes 5:124CrossRefGoogle Scholar
  10. 10.
    Caradec J, Sirab N, Keumeugni C, Moutereau S, Chimingqi M, Matar C, Revaud D, Bah M, Manivet P, Conti M, Loric S (2010) ‘Desperate house genes’: the dramatic example of hypoxia. Br J Cancer 102:1037–1043CrossRefGoogle Scholar
  11. 11.
    Klenke S, Renckhoff K, Engler A, Peters J, Frey UH (2016) Easy-to-use strategy for reference gene selection in quantitative real-time PCR experiment. Naunyn Schmiedebergs Arch Pharmacol 389:1353–1366CrossRefGoogle Scholar
  12. 12.
    Gubern C, Hurtado O, Rodriguez R, Morales JR, Romera VG, Moro MA, Lizasoain I, Serena J, Mallolas J (2009) Validation of housekeeping genes for quantitative real-time PCR in in vivo and in vitro models of cerebral ischaemia. BMC Mol Biol 10:57CrossRefGoogle Scholar
  13. 13.
    Svingen T, Letting H, Hadrup N, Hass U, Vinggaard AM (2015) Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions. PeerJ 3:e855CrossRefGoogle Scholar
  14. 14.
    Adeola F (2018) Normalization of gene expression by quantitative RT-PCR in human cell line: comparison of 12 endogenous reference genes. Ethiop J Health Sci 28:741–748Google Scholar
  15. 15.
    Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250CrossRefGoogle Scholar
  16. 16.
    Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515CrossRefGoogle Scholar
  17. 17.
    Kubista M, Rusnakova V, Svec D, Sogreen D, Tichopad A (2012) GenEx: data analysis software. In: Filion M (ed) Quantitative real-time PCR in applied microbiology, 1st edn. Caister Academic Press, Norfolk, pp 63–84Google Scholar
  18. 18.
    Molina CE, Jacquet E, Ponien P, Munoz-Guijosa C, Baczko I, Maier LS, Donzeau-Gouge P, Dobrev D, Fischmeister R, Garnier A (2018) Identification of optimal reference genes for transcriptomic analyses in normal and diseased human heart. Cardiovasc Res 114:247–258CrossRefGoogle Scholar
  19. 19.
    Dengler VL, Galbraith M, Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49:1–15CrossRefGoogle Scholar
  20. 20.
    D’Ignazio L, Rocha S (2016) Hypoxia induced NF-κB. Cells 5:10CrossRefGoogle Scholar
  21. 21.
    Kolamunne RT, Dias IH, Vernallis AB, Grant MM, Griffiths HR (2013) Nrf2 activation supports cell survival during hypoxia and hypoxia/reoxygenation in cardiomyoblasts; the roles of reactive oxygen and nitrogen species. Redox Biol 1:418–426CrossRefGoogle Scholar
  22. 22.
    Kaluz S, Kaluzova M, Stanbridge EJ (2008) Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin Chim Acta 395:6–13CrossRefGoogle Scholar
  23. 23.
    Liu T, Lingyun Z, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:e17023CrossRefGoogle Scholar
  24. 24.
    Graven KK, Yu Q, Pan D, Roncarati JS, Farber HW (1999) Identification of an oxygen responsive enhancer element in the glyceraldehyde-3-phosphate dehydrogenase gene. Biochim Biophys Acta 1447:208–218CrossRefGoogle Scholar
  25. 25.
    Wu J, Bond C, Chen P, Chen M, Li Y, Shohet RV, Wright G (2015) HIF-1α in the heart: remodeling nucleotide metabolism. J Mol Cell Cardiol 82:194–200CrossRefGoogle Scholar
  26. 26.
    Brattelid T, Winer LH, Levy FO, Liestol K, Sejersted OM, Andersson KB (2010) Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies. BMC Mol Biol 11:22CrossRefGoogle Scholar
  27. 27.
    Cabiati M, Raucci S, Caselli C, Guzzardi MA, D’Amico A, Prescimone T, Giannessi D, Del Ry S (2012) Tissue-specific selection of stable reference genes for real-time PCR normalization in an obese rat model. J Mol Endocrinol 48:251–260CrossRefGoogle Scholar
  28. 28.
    Klusonova P, Rehakova L, Borchert G, Vagnerova K, Neckar J, Ergang P, Miksik I, Kolar F, Pacha J (2009) Chronic intermittent hypoxia induces 11β-hydroxysteroid dehydrogenase in rat heart. Endocrinology 150:4270–4277CrossRefGoogle Scholar
  29. 29.
    Bohuslavova R, Kolar F, Kuthanova L, Neckar J, Tichopad A, Pavlinkova G (2010) Gene expression profiling of sex differences in HIF1-dependent adaptive cardiac responses to chronic hypoxia. J Appl Physiol 109:1195–1202CrossRefGoogle Scholar
  30. 30.
    Perez S, Royo LJ, Astudillo A, Escudero D, Alvarez F, Rodriguez A, Gomez E, Otero J (2007) Identifying the most suitable endogenous control for determining gene expression in hearts from organ donors. BMC Mol Biol 8:114CrossRefGoogle Scholar
  31. 31.
    Li M, Rao M, Chen K, Zhou J, Song J (2017) Selection of reference genes for gene expression studies in heart failure for left and right ventricles. Gene 620:30–35CrossRefGoogle Scholar
  32. 32.
    Pillbrow AP, Ellmers LJ, Black MA, Moravec CS, Sweet WE, Troughton RW, Richards AM, Frampton CM, Cameron VA (2008) Genomic selection of reference genes for real-time PCR in human myocardium. BMC Med Genomics 1:64CrossRefGoogle Scholar
  33. 33.
    Caselli C, D’Amico A, Caruso R, Cabiati M, Prescimone T, Cozzi L, Cannata A, Parodi O, Del Ry S, Giannessi D (2013) Impact of normalization strategy on cardiac expression of pro-inflammatory cytokines: evaluation of reference genes in different human myocardial regions after left ventricular assist device support. Cytokine 63:113–122CrossRefGoogle Scholar
  34. 34.
    Nachar W, Busseuil D, Shi Y, Michalache-Avram T, Mecteau M, Rheaume E, Tardiff JC (2014) Optimisation of reference genes for gene-expression analysis in a rabbit model of left ventricular diastolic dysfunction. PLoS ONE 9:e89331CrossRefGoogle Scholar
  35. 35.
    Martino A, Cabiati M, Campan M, Prescimone T, Minocci D, Caselli C, Rossi AM, Giannessi D, Del Ry S (2011) Selection of reference genes for normalization of real-time PCR data in minipig heart failure model and evaluation of TNF-α mRNA expression. J Biotechnol 153:92–99CrossRefGoogle Scholar
  36. 36.
    Ruiz-Villalba A, Mattiotti A, Gunst QD, Cano-Ballesteros S, van den Hoff MJ, Ruijter JM (2017) Reference genes for gene expression studies in the mouse heart. Sci Rep 7:24CrossRefGoogle Scholar
  37. 37.
    Everaert BR, Boulet GA, Timmermans JP, Vrints CJ (2011) Importance of suitable reference gene selection for quantitative real-time PCR: special reference to mouse myocardial infarction studies. PLoS ONE 6:e23793CrossRefGoogle Scholar
  38. 38.
    Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Developmental CardiologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic

Personalised recommendations