Advertisement

Attenuating effect of silibinin on palmitic acid-induced apoptosis and mitochondrial dysfunction in pancreatic β-cells is mediated by estrogen receptor alpha

  • Yue Sun
  • Jing Yang
  • Weiwei Liu
  • Guodong Yao
  • Fanxing Xu
  • Toshihiko Hayashi
  • Satoshi Onodera
  • Takashi IkejimaEmail author
Article
  • 41 Downloads

Abstract

High levels of circulating free fatty acids often trigger pancreatic β cell dysfunction during the development of type 2 diabetes. Silibinin, the main component of Silybum marianum fruit extract (silymarin), is reported to have anti-diabetic effect. This study is designed to determine the protective effect of silibinin on palmitic acid-induced damage in a rat pancreatic β-cell line, INS-1 cells. Our results demonstrate that silibinin improves cell viability, enhances insulin synthesis and secretion, and resumes normal mitochondrial function in palmitic acid-treated INS-1 cells. An accumulating body of evidence has shown that the estrogen receptors are key molecules involved in glucose and lipid metabolism. Our results suggest that silibinin upregulates ERα signaling pathway from the finding that ERα-specific inhibitors abolish the anti-lipotoxic effect of silibinin. In conclusion, these findings suggest that silibinin protects INS-1 cells against apoptosis and mitochondrial damage through upregulation of ERα pathway.

Keywords

Silibinin Palmitic acid Estrogen receptors (ERs) Mitochondria 

Notes

Acknowledgements

This research was supported by National Natural Science Foundation of China (No. 81703528).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zheng Y, Ley SH, Hu FB (2017) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14(2):88–98Google Scholar
  2. 2.
    Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG, Spegel P, Mulder H (2018) The pathogenetic role of beta-cell mitochondria in type 2 diabetes. J Endocrinol 236(3):R145–R159.  https://doi.org/10.1530/JOE-17-0367 Google Scholar
  3. 3.
    Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, Bahalim AN, McIntire RK, Gutierrez HR, Cowan M (2012) National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metr 10(1):22Google Scholar
  4. 4.
    Lee E, Choi J, Lee HS (2017) Palmitate induces mitochondrial superoxide generation and activates AMPK in podocytes. J Cell Physiol 232(12):3209–3217.  https://doi.org/10.1002/jcp.25867 Google Scholar
  5. 5.
    Tuo Y, Wang D, Li S, Chen C (2011) Long-term exposure of INS-1 rat insulinoma cells to linoleic acid and glucose in vitro affects cell viability and function through mitochondrial-mediated pathways. Endocrine 39(2):128–138.  https://doi.org/10.1007/s12020-010-9432-3 Google Scholar
  6. 6.
    Ciregia F, Bugliani M, Ronci M, Giusti L, Boldrini C, Mazzoni MR, Mossuto S, Grano F, Cnop M, Marselli L, Giannaccini G, Urbani A, Lucacchini A, Marchetti P (2017) Palmitate-induced lipotoxicity alters acetylation of multiple proteins in clonal beta cells and human pancreatic islets. Sci Rep 7(1):13445.  https://doi.org/10.1038/s41598-017-13908-w Google Scholar
  7. 7.
    Nadal A, Alonso-Magdalena P, Soriano S, Quesada I, Ropero AB (2009) The pancreatic beta-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol 304(1–2):63–68.  https://doi.org/10.1016/j.mce.2009.02.016 Google Scholar
  8. 8.
    Burns KA, Korach KS (2012) Estrogen receptors and human disease: an update. Arch Toxicol 86(10):1491–1504.  https://doi.org/10.1007/s00204-012-0868-5 Google Scholar
  9. 9.
    Jia G, Aroor AR, Sowers JR (2014) Estrogen and mitochondria function in cardiorenal metabolic syndrome. Prog Mol Biol Transl Sci 127:229–249.  https://doi.org/10.1016/B978-0-12-394625-6.00009-X Google Scholar
  10. 10.
    Hamilton DJ, Minze LJ, Kumar T, Cao TN, Lyon CJ, Geiger PC, Hsueh WA, Gupte AA (2016) Estrogen receptor alpha activation enhances mitochondrial function and systemic metabolism in high-fat-fed ovariectomized mice. Physiol Rep 4(17):e12913.  https://doi.org/10.14814/phy2.12913 Google Scholar
  11. 11.
    Mauvais-Jarvis F (2011) Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol Metab 22(1):24–33.  https://doi.org/10.1016/j.tem.2010.10.002 Google Scholar
  12. 12.
    Zhou Z, Ribas V, Rajbhandari P, Drew BG, Moore TM, Fluitt AH, Reddish BR, Whitney KA, Georgia S, Vergnes L, Reue K, Liesa M, Shirihai O, van der Bliek AM, Chi NW, Mahata SK, Tiano JP, Hewitt SC, Tontonoz P, Korach KS, Mauvais-Jarvis F, Hevener AL (2018) Estrogen receptor alpha protects pancreatic beta-cells from apoptosis by preserving mitochondrial function and suppressing endoplasmic reticulum stress. J Biol Chem 293(13):4735–4751.  https://doi.org/10.1074/jbc.M117.805069 Google Scholar
  13. 13.
    Geisler JG, Walter Z, Kathleen Z, Lakey JRT, Hans S, Milici AJ, Soeller WC (2002) Estrogen can prevent or reverse obesity and diabetes in mice expressing human islet amyloid polypeptide. Diabetes 51(7):2158Google Scholar
  14. 14.
    Pierre G, Bourgeois EA, Anais L, Linh P, Elodie R, Marie-Louise A, Diane D, Jean-Marc G, Francis B, Claes O (2016) Estrogen therapy delays autoimmune diabetes and promotes the protective efficiency of natural killer T-cell activation in female nonobese diabetic mice. Endocrinology 157(1):258–267Google Scholar
  15. 15.
    Horn PA, Mohlig M, Osterhoff M, Wolter S, Hofmann J, Stocking C, Ostertag W, Wahl M, Schatz H, Pfeiffer A (2000) Effect of estradiol on insulin secreting INS-1 cells overexpressing estrogen receptors. Eur J Endocrinol 142(1):84Google Scholar
  16. 16.
    Chen JQ, Yager JD, Russo J (2005) Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim Biophys Acta 1746(1):1–17.  https://doi.org/10.1016/j.bbamcr.2005.08.001 Google Scholar
  17. 17.
    Wiederkehr A, Wollheim CB (2012) Mitochondrial signals drive insulin secretion in the pancreatic beta-cell. Mol Cell Endocrinol 353(1–2):128–137.  https://doi.org/10.1016/j.mce.2011.07.016 Google Scholar
  18. 18.
    Cho YM, Park KS, Lee HK (2007) Genetic factors related to mitochondrial function and risk of diabetes mellitus. Diabetes Res Clin Pract 77(Suppl 1):S172–177.  https://doi.org/10.1016/j.diabres.2007.01.052 Google Scholar
  19. 19.
    Belitz AR, Sams CE (2007) Effect of population density on growth, yield, and flavonolignan content in milk thistle (Silybum marianum). Acta Hortic 756(756):251–257Google Scholar
  20. 20.
    Nejati-Koshki K, Zarghami N, Pourhassan-Moghaddam M, Rahmati-Yamchi M, Mollazade M, Nasiri M, Esfahlan RJ, Barkhordari A, Tayefi-Nasrabadi H (2012) Inhibition of leptin gene expression and secretion by silibinin: possible role of estrogen receptors. Cytotechnology 64(6):719–726.  https://doi.org/10.1007/s10616-012-9452-3 Google Scholar
  21. 21.
    Pliskova M, Vondracek J, Kren V, Gazak R, Sedmera P, Walterova D, Psotova J, Simanek V, Machala M (2005) Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation. Toxicology 215(1–2):80–89.  https://doi.org/10.1016/j.tox.2005.06.020 Google Scholar
  22. 22.
    Jahanafrooz Z, Motamed N, Rinner B, Mokhtarzadeh A, Baradaran B (2018) Silibinin to improve cancer therapeutic, as an apoptotic inducer, autophagy modulator, cell cycle inhibitor, and microRNAs regulator. Life Sci 213:236–247.  https://doi.org/10.1016/j.lfs.2018.10.009 Google Scholar
  23. 23.
    Bijak M (2017) Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—chemistry, bioavailability, and metabolism. Molecules 22(11):1942.  https://doi.org/10.3390/molecules22111942 Google Scholar
  24. 24.
    Chen K, Zhao L, He H, Wan X, Wang F, Mo Z (2014) Silibinin protects beta cells from glucotoxicity through regulation of the Insig-1/SREBP-1c pathway. Int J Mol Med 34(4):1073–1080.  https://doi.org/10.3892/ijmm.2014.1883 Google Scholar
  25. 25.
    Yang J, Sun Y, Xu F, Liu W, Hayashi T, Onodera S, Tashiro SI, Ikejima T (2018) Involvement of estrogen receptors in silibinin protection of pancreatic beta-cells from TNFalpha- or IL-1beta-induced cytotoxicity. Biomed Pharmacother 102:344–353.  https://doi.org/10.1016/j.biopha.2018.01.128 Google Scholar
  26. 26.
    Li F, Munsey TS, Sivaprasadarao A (2017) TRPM2-mediated rise in mitochondrial Zn(2 +) promotes palmitate-induced mitochondrial fission and pancreatic beta-cell death in rodents. Cell Death Differ 24(12):1999–2012.  https://doi.org/10.1038/cdd.2017.118 Google Scholar
  27. 27.
    Oh YS, Bae GD, Baek DJ (2018) Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front Endocrinol 9:384Google Scholar
  28. 28.
    Ma ZJ, Lu L, Yang JJ, Wang XX, Su G, Wang ZL, Chen GH, Sun HM, Wang MY, Yang Y (2018) Lariciresinol induces apoptosis in HepG2 cells via mitochondrial-mediated apoptosis pathway. Eur J Pharmacol 821:1–10.  https://doi.org/10.1016/j.ejphar.2017.12.027 Google Scholar
  29. 29.
    Jiang L, Liu Y, Ma MM, Tang YB, Zhou JG, Guan YY (2013) Mitochondria dependent pathway is involved in the protective effect of bestrophin-3 on hydrogen peroxide-induced apoptosis in basilar artery smooth muscle cells. Apoptosis 18(5):556–565.  https://doi.org/10.1007/s10495-013-0828-4 Google Scholar
  30. 30.
    Tao S, Ren Y, Zheng H, Zhao M, Zhang X, Zhu Y, Yang J, Zheng S (2017) Salvianolic acid B inhibits intermittent high glucose-induced INS-1 cell apoptosis through regulation of Bcl-2 proteins and mitochondrial membrane potential. Eur J Pharmacol 814:56–62.  https://doi.org/10.1016/j.ejphar.2017.08.007 Google Scholar
  31. 31.
    Adzic M, Mitic M, Radojcic M (2017) Mitochondrial estrogen receptors as a vulnerability factor of chronic stress and mediator of fluoxetine treatment in female and male rat hippocampus. Brain Res 1671:77–84.  https://doi.org/10.1016/j.brainres.2017.07.007 Google Scholar
  32. 32.
    Liao TL, Tzeng CR, Yu CL, Wang YP, Kao SH (2015) Estrogen receptor-beta in mitochondria: implications for mitochondrial bioenergetics and tumorigenesis. Ann N Y Acad Sci 1350:52–60.  https://doi.org/10.1111/nyas.12872 Google Scholar
  33. 33.
    Huang CN, Wang CJ, Lee YJ, Peng CH (2017) Active subfractions of Abelmoschus esculentus substantially prevent free fatty acid-induced beta cell apoptosis via inhibiting dipeptidyl peptidase-4. PLoS ONE 12(7):e0180285.  https://doi.org/10.1371/journal.pone.0180285 Google Scholar
  34. 34.
    Ly LD, Xu S, Choi SK, Ha CM, Thoudam T, Cha SK, Wiederkehr A, Wollheim CB, Lee IK, Park KS (2017) Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med 49(2):e291.  https://doi.org/10.1038/emm.2016.157 Google Scholar
  35. 35.
    Lin Y, Sun X, Qiu L, Wei J, Huang Q, Fang C, Ye T, Kang M, Shen H, Dong S (2013) Exposure to bisphenol A induces dysfunction of insulin secretion and apoptosis through the damage of mitochondria in rat insulinoma (INS-1) cells. Cell Death Dis 4:e460.  https://doi.org/10.1038/cddis.2012.206 Google Scholar
  36. 36.
    Xu F, Yang J, Negishi H, Sun Y, Li D, Zhang X, Hayashi T, Gao M, Ikeda K, Ikejima T (2018) Silibinin decreases hepatic glucose production through the activation of gut-brain-liver axis in diabetic rats. Food Funct 9(9):4926–4935Google Scholar
  37. 37.
    Yujeong L, Hee Ra P, Hye Jeong C, Jaewon L (2015) Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. J Neurosci Res 93(5):755–765Google Scholar
  38. 38.
    Wesołowska O, Łania‐pietrzak B, Kuzdzal M, Stanczak K, Mosiadz D (2010) Influence of silybin on biophysical properties of phospholipid bilayers1/. Acta Pharmacol Sin 28(2):296–306Google Scholar
  39. 39.
    Kooptiwut S, Wanchai K, Semprasert N, Srisawat C, Yenchitsomanus PT (2017) Estrogen attenuates AGTR1 expression to reduce pancreatic beta-cell death from high glucose. Sci Rep 7(1):16639.  https://doi.org/10.1038/s41598-017-15237-4 Google Scholar
  40. 40.
    Barros RP, Gustafsson JA (2011) Estrogen receptors and the metabolic network. Cell Metab 14(3):289–299.  https://doi.org/10.1016/j.cmet.2011.08.005 Google Scholar
  41. 41.
    Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F (2014) Estrogen receptors alpha (ERalpha) and beta (ERbeta): subtype-selective ligands and clinical potential. Steroids 90:13–29.  https://doi.org/10.1016/j.steroids.2014.06.012 Google Scholar
  42. 42.
    Mauvais-Jarvis F, Le May C, Tiano JP, Liu S, Kilic-Berkmen G, Kim JH (2017) The role of estrogens in pancreatic islet physiopathology. Adv Exp Med Biol 1043:385–399.  https://doi.org/10.1007/978-3-319-70178-3_18 Google Scholar
  43. 43.
    Le May C, Chu K, Hu M, Ortega CS, Simpson ER, Korach KS, Tsai MJ, Mauvais-Jarvis F (2006) Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci USA 103(24):9232–9237.  https://doi.org/10.1073/pnas.0602956103 Google Scholar
  44. 44.
    Gourdy P, Guillaume M, Fontaine C, Adlanmerini M, Montagner A, Laurell H, Lenfant F, Arnal JF (2018) Estrogen receptor subcellular localization and cardiometabolism. Mol Metab 15:56–69.  https://doi.org/10.1016/j.molmet.2018.05.009 Google Scholar
  45. 45.
    Razandi M, Pedram A, Park ST, Levin ER (2003) Proximal events in signaling by plasma membrane estrogen receptors. J Biol Chem 278(4):2701–2712.  https://doi.org/10.1074/jbc.M205692200 Google Scholar
  46. 46.
    Kelly MJ, Levin ER (2001) Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab 12(4):152–156Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yue Sun
    • 1
  • Jing Yang
    • 1
    • 6
  • Weiwei Liu
    • 1
  • Guodong Yao
    • 2
    • 3
  • Fanxing Xu
    • 1
  • Toshihiko Hayashi
    • 1
    • 4
  • Satoshi Onodera
    • 5
  • Takashi Ikejima
    • 1
    • 3
    Email author
  1. 1.Wuya College of InnovationShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  2. 2.School of Traditional Chinese MedicaShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  3. 3.Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & DevelopmentShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  4. 4.Department of Chemistry and Life Science, School of Advanced EngineeringKogakuin UniversityHachiojiJapan
  5. 5.Department of Clinical and Pharmaceutical SciencesShowa Pharmaceutical UniversityTokyoJapan
  6. 6.Department of PharmacyThe Third People’s Hospital of ChengduChengduPeople’s Republic of China

Personalised recommendations