Advertisement

Hyperglycemia (high-glucose) decreases l-cysteine and glutathione levels in cultured monocytes and blood of Zucker diabetic rats

  • Preeti Kanikarla-Marie
  • David Micinski
  • Sushil K. JainEmail author
Article

Abstract

l-Cysteine (LC) is an essential precursor of GSH biosynthesis. GSH is a major physiological antioxidant, and its depletion increases oxidative stress. Diabetes is associated with lower blood levels of lc and GSH. The mechanisms leading to a decrease in lc in diabetes are not entirely known. This study reports a significant decrease in LC in human monocytes exposed to high glucose (HG) concentrations as well as in the blood of type 2 diabetic rats. Thus, a significant decrease in the level of LC in response to exposure to HG supports the assertion that uncontrolled hyperglycemia contributes to a reduction of blood levels of lc and GSH seen in diabetic patients. Increased requirement of LC to replace GSH needed to scavenge excess ROS generated by hyperglycemia can result in lower levels of LC and GSH. Animal and human studies report that LC supplementation improves GSH biosynthesis and is beneficial in lowering oxidative stress and insulin resistance. This suggests that hyperglycemia has a direct role in the impairment of lc and GSH homeostasis in diabetes.

Keywords

l-Cysteine Glutathione Diabetes Hyperglycemia 

Notes

Acknowledgements

The authors are supported by grants from NCCAM of the NIH (Grant No. RO1 AT007442), the Malcolm Feist Endowed Chair in Diabetes, and by a fellowship from the Malcolm Feist Cardiovascular Research Endowment from LSUHSC, Shreveport. The authors thank Georgia Morgan for excellent editing of this manuscript. The authors have declared that no conflict of interest exists.

References

  1. 1.
    Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI (2007) The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 113:234–258.  https://doi.org/10.1080/13813450701661198 CrossRefGoogle Scholar
  2. 2.
    Darmaun D, Smith SD, Sweeten S, Sager BK, Welch S, Mauras N (2005) Evidence for accelerated rates of glutathione utilization and glutathione depletion in adolescents with poorly controlled type 1 diabetes. Diabetes 54:190–196CrossRefGoogle Scholar
  3. 3.
    Furfaro AL, Nitti M, Marengo B, Domenicotti C, Cottalasso D, Marinari UM, Pronzato MA, Traverso N (2012) Impaired synthesis contributes to diabetes-induced decrease in liver glutathione. Int J Mol Med 29:899–905.  https://doi.org/10.3892/ijmm.2012.915 Google Scholar
  4. 4.
    Jain SK, Kahlon G, Bass P, Levine SN, Warden C (2015) Can l-cysteine and vitamin D rescue vitamin D and vitamin D binding protein levels in blood plasma of African American type 2 diabetic patients? Antioxid Redox Signal 23:688–693.  https://doi.org/10.1089/ars.2015.6320 CrossRefGoogle Scholar
  5. 5.
    Jain SK, McVie R (1994) Effect of glycemic control, race (white versus black), and duration of diabetes on reduced glutathione content in erythrocytes of diabetic patients. Metabolism 43:306–309CrossRefGoogle Scholar
  6. 6.
    Jain SK, Micinski D, Huning L, Kahlon G, Bass PF, Levine SN (2014) Vitamin D and l-cysteine levels correlate positively with GSH and negatively with insulin resistance levels in the blood of type 2 diabetic patients. Eur J Clin Nutr 68:1148–1153.  https://doi.org/10.1038/ejcn.2014.114 CrossRefGoogle Scholar
  7. 7.
    Droge W (2005) Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? Philos Trans R Soc Lond B Biol Sci 360:2355–2372.  https://doi.org/10.1098/rstb.2005.1770 CrossRefGoogle Scholar
  8. 8.
    Kwak HC, Kim YM, Oh SJ, Kim SK (2015) Sulfur amino acid metabolism in Zucker diabetic fatty rats. Biochem Pharmacol 96:256–266.  https://doi.org/10.1016/j.bcp.2015.05.014 CrossRefGoogle Scholar
  9. 9.
    Sekhar RV, McKay SV, Patel SG, Guthikonda AP, Reddy VT, Balasubramanyam A, Jahoor F (2011) Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 34:162–167.  https://doi.org/10.2337/dc10-1006 CrossRefGoogle Scholar
  10. 10.
    Tan KS, Lee KO, Low KC, Gamage AM, Liu Y, Tan GY, Koh HQ, Alonso S, Gan YH (2012) Glutathione deficiency in type 2 diabetes impairs cytokine responses and control of intracellular bacteria. J Clin Invest 122:2289–2300.  https://doi.org/10.1172/JCI57817 CrossRefGoogle Scholar
  11. 11.
    Yin J, Ren W, Yang G, Duan J, Huang X, Fang R, Li C, Li T, Yin Y, Hou Y, Kim SW, Wu G (2016) l-cysteine metabolism and its nutritional implications. Mol Nutr Food Res 60:134–146.  https://doi.org/10.1002/mnfr.201500031 CrossRefGoogle Scholar
  12. 12.
    Yun KU, Ryu CS, Lee JY, Noh JR, Lee CH, Lee HS, Kang JS, Park SK, Kim BH, Kim SK (2013) Hepatic metabolism of sulfur amino acids in db/db mice. Food Chem Toxicol 53:180–186.  https://doi.org/10.1016/j.fct.2012.11.046 CrossRefGoogle Scholar
  13. 13.
    Newsholme P, Cruzat V, Arfuso F, Keane K (2014) Nutrient regulation of insulin secretion and action. J Endocrinol 221:R105–R120.  https://doi.org/10.1530/JOE-13-0616 CrossRefGoogle Scholar
  14. 14.
    Ogawa S, Takiguchi J, Shimizu M, Nako K, Okamura M, Kinouchi Y, Ito S (2017) The relationship between the renal reabsorption of cysteine and the lowered urinary pH in diabetics. Clin Exp Nephrol 21:1044–1052.  https://doi.org/10.1007/s10157-017-1401-1 CrossRefGoogle Scholar
  15. 15.
    Jain SK (1989) Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem 264:21340–21345Google Scholar
  16. 16.
    Jain SK, McVie R, Duett J, Herbst JJ (1989) Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 38:1539–1543CrossRefGoogle Scholar
  17. 17.
    Jain SK, Micinski D (2013) Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun 437:7–11.  https://doi.org/10.1016/j.bbrc.2013.06.004 CrossRefGoogle Scholar
  18. 18.
    Jain SK, Parsanathan R, Achari AE, Kanikarla-Marie P, Bocchini JA Jr (2018) Glutathione stimulates vitamin D regulatory and glucose-metabolism genes, lowers oxidative stress and inflammation, and increases 25-hydroxy-vitamin D levels in blood: a novel approach to treat 25-hydroxyvitamin D deficiency. Antioxid Redox Signal 29:1792–1807.  https://doi.org/10.1089/ars.2017.7462 CrossRefGoogle Scholar
  19. 19.
    Kannan K, Jain SK (1994) Effect of high glucose on cellular proliferation and lipid peroxidation in cultured Vero cells. Horm Metab Res 26:322–325.  https://doi.org/10.1055/s-2007-1001695 CrossRefGoogle Scholar
  20. 20.
    Dutta P, Nahrendorf M (2014) Regulation and consequences of monocytosis. Immunol Rev 262:167–178.  https://doi.org/10.1111/imr.12219 CrossRefGoogle Scholar
  21. 21.
    Yang J, Zhang L, Yu C, Yang XF, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2:1.  https://doi.org/10.1186/2050-7771-2-1 CrossRefGoogle Scholar
  22. 22.
    Bianconi V, Sahebkar A, Atkin SL, Pirro M (2018) The regulation and importance of monocyte chemoattractant protein-1. Curr Opin Hematol 25:44–51.  https://doi.org/10.1097/MOH.0000000000000389 CrossRefGoogle Scholar
  23. 23.
    Pfeiffer CM, Huff DL, Gunter EW (1999) Rapid and accurate HPLC assay for plasma total homocysteine and cysteine in a clinical laboratory setting. Clin Chem 45:290–292Google Scholar
  24. 24.
    Lyons J, Rauh-Pfeiffer A, Yu Y, Lu X-M, Zurakowski D, Tompkins R, Ajami A, Young V, Castillo L (2000) Blood glutathione synthesis rates in healthy adults receiving a sulfur amino acid-free diet. Proc Natl Acad Sci 97:5071–5076CrossRefGoogle Scholar
  25. 25.
    Jackson AA, Gibson NR, Lu Y, Jahoor F (2004) Synthesis of erythrocyte glutathione in healthy adults consuming the safe amount of dietary protein. Am J Clin Nutr 80:101–107CrossRefGoogle Scholar
  26. 26.
    Grimble R, Jackson A, Persaud C, Wride M, Delers F, Engler R (1992) Cysteine and Glycine Supplementation Modulate the Metabolic Response to Tumor Necrosis Factor in Rats Fed a Low Protein Diet. J Nutr Baltim Springf Bethesda 122:2066Google Scholar
  27. 27.
    Jahoor F, Wykes LJ, Reeds PJ, Henry JF (1995) Protein-deficient pigs cannot maintain reduced glutathione homeostasis when subjected to the stress of inflammation. J Nutr 125:1462Google Scholar
  28. 28.
    Bella DL, Hahn C, Stipanuk MH (1999) Effects of nonsulfur and sulfur amino acids on the regulation of hepatic enzymes of cysteine metabolism. Am J Physiol Endocrinol Metab 277:E144–E153CrossRefGoogle Scholar
  29. 29.
    Cresenzi CL, Lee J-I, Stipanuk MH (2003) Cysteine is the metabolic signal responsible for dietary regulation of hepatic cysteine dioxygenase and glutamate cysteine ligase in intact rats. J Nutr 133:2697–2702CrossRefGoogle Scholar
  30. 30.
    Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA (2007) N-acetylcysteine–a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 7:355–359.  https://doi.org/10.1016/j.coph.2007.04.005 CrossRefGoogle Scholar
  31. 31.
    Badaloo A, Reid M, Forrester T, Heird WC, Jahoor F (2002) Cysteine supplementation improves the erythrocyte glutathione synthesis rate in children with severe edematous malnutrition. Am J Clin Nutr 76:646–652.  https://doi.org/10.1093/ajcn/76.3.646 CrossRefGoogle Scholar
  32. 32.
    Blouet C, Mariotti F, Azzout-Marniche D, Mathe V, Mikogami T, Tome D, Huneau JF (2007) Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance. Free Radic Biol Med 42:1089–1097.  https://doi.org/10.1016/j.freeradbiomed.2007.01.006 CrossRefGoogle Scholar
  33. 33.
    De Mattia G, Bravi MC, Laurenti O, Cassone-Faldetta M, Proietti A, De Luca O, Armiento A, Ferri C (1998) Reduction of oxidative stress by oral N-acetyl-l-cysteine treatment decreases plasma soluble vascular cell adhesion molecule-1 concentrations in non-obese, non-dyslipidaemic, normotensive, patients with non-insulin-dependent diabetes. Diabetologia 41:1392–1396.  https://doi.org/10.1007/s001250051082 CrossRefGoogle Scholar
  34. 34.
    Diniz YS, Rocha KK, Souza GA, Galhardi CM, Ebaid GM, Rodrigues HG, Novelli Filho JL, Cicogna AC, Novelli EL (2006) Effects of N-acetylcysteine on sucrose-rich diet-induced hyperglycaemia, dyslipidemia and oxidative stress in rats. Eur J Pharmacol 543:151–157.  https://doi.org/10.1016/j.ejphar.2006.05.039 CrossRefGoogle Scholar
  35. 35.
    Haber CA, Lam TK, Yu Z, Gupta N, Goh T, Bogdanovic E, Giacca A, Fantus IG (2003) N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab 285:E744–E753.  https://doi.org/10.1152/ajpendo.00355.2002 CrossRefGoogle Scholar
  36. 36.
    Hsu CC, Yen HF, Yin MC, Tsai CM, Hsieh CH (2004) Five cysteine-containing compounds delay diabetic deterioration in Balb/cA mice. J Nutr 134:3245–3249.  https://doi.org/10.1093/jn/134.12.3245 CrossRefGoogle Scholar
  37. 37.
    Jain SK, Kanikarla-Marie P, Warden C, Micinski D (2016) L-cysteine supplementation upregulates glutathione (GSH) and vitamin D binding protein (VDBP) in hepatocytes cultured in high glucose and in vivo in liver, and increases blood levels of GSH, VDBP, and 25-hydroxy-vitamin D in Zucker diabetic fatty rats. Mol Nutr Food Res 60:1090–1098.  https://doi.org/10.1002/mnfr.201500667 CrossRefGoogle Scholar
  38. 38.
    Jain SK, Velusamy T, Croad JL, Rains JL, Bull R (2009) L-cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, and oxidative stress and inhibits NF-kappaB activation in the livers of Zucker diabetic rats. Free Radic Biol Med 46:1633–1638.  https://doi.org/10.1016/j.freeradbiomed.2009.03.014 CrossRefGoogle Scholar
  39. 39.
    Martina V, Masha A, Gigliardi VR, Brocato L, Manzato E, Berchio A, Massarenti P, Settanni F, Della Casa L, Bergamini S, Iannone A (2008) Long-term N-acetylcysteine and l-arginine administration reduces endothelial activation and systolic blood pressure in hypertensive patients with type 2 diabetes. Diabetes Care 31:940–944.  https://doi.org/10.2337/dc07-2251 CrossRefGoogle Scholar
  40. 40.
    McPherson RA, Hardy G (2011) Clinical and nutritional benefits of cysteine-enriched protein supplements. Curr Opin Clin Nutr Metab Care 14:562–568.  https://doi.org/10.1097/MCO.0b013e32834c1780 CrossRefGoogle Scholar
  41. 41.
    Nguyen D, Hsu JW, Jahoor F, Sekhar RV (2014) Effect of increasing glutathione with cysteine and glycine supplementation on mitochondrial fuel oxidation, insulin sensitivity, and body composition in older HIV-infected patients. J Clin Endocrinol Metab 99:169–177.  https://doi.org/10.1210/jc.2013-2376 CrossRefGoogle Scholar
  42. 42.
    Ozkilic AC, Cengiz M, Ozaydin A, Cobanoglu A, Kanigur G (2006) The role of N-acetylcysteine treatment on anti-oxidative status in patients with type II diabetes mellitus. J Basic Clin Physiol Pharmacol 17:245–254CrossRefGoogle Scholar
  43. 43.
    Pieper GM, Siebeneich W (1998) Oral administration of the antioxidant, N-acetylcysteine, abrogates diabetes-induced endothelial dysfunction. J Cardiovasc Pharmacol 32:101–105CrossRefGoogle Scholar
  44. 44.
    Richie JP Jr, Nichenametla S, Neidig W, Calcagnotto A, Haley JS, Schell TD, Muscat JE (2015) Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. Eur J Nutr 54:251–263.  https://doi.org/10.1007/s00394-014-0706-z CrossRefGoogle Scholar
  45. 45.
    Xiong Y, Zhou S, Yu Z, Zhao D, Wang Z, Li Y, Yan J, Cai Y, Zhang W (2016) Inhibition of glutathione synthesis induced by exhaustive running exercise via the decreased influx rate of l-cysteine in rat erythrocytes. Cell Physiol Biochem 40:1410–1421CrossRefGoogle Scholar
  46. 46.
    Aw TY, Wierzbicka G, Jones DP (1991) Oral glutathione increases tissue glutathione in vivo. Chem Biol Interact 80:89–97CrossRefGoogle Scholar
  47. 47.
    Jakubowicz D, Froy O (2013) Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and type 2 diabetes. J Nutr Biochem 24:1–5.  https://doi.org/10.1016/j.jnutbio.2012.07.008 CrossRefGoogle Scholar
  48. 48.
    Lillefosse HH, Tastesen HS, Du ZY, Ditlev DB, Thorsen FA, Madsen L, Kristiansen K, Liaset B (2013) Hydrolyzed casein reduces diet-induced obesity in male C57BL/6 J mice. J Nutr 143:1367–1375.  https://doi.org/10.3945/jn.112.170415 CrossRefGoogle Scholar
  49. 49.
    Liu Z, Li J, Zeng Z, Liu M, Wang M (2008) The antidiabetic effects of cysteinyl metformin, a newly synthesized agent, in alloxan- and streptozocin-induced diabetic rats. Chem Biol Interact 173:68–75.  https://doi.org/10.1016/j.cbi.2007.11.012 CrossRefGoogle Scholar
  50. 50.
    Ma Y, Gao M, Liu D (2016) N-acetylcysteine protects mice from high fat diet-induced metabolic disorders. Pharm Res 33:2033–2042.  https://doi.org/10.1007/s11095-016-1941-1 CrossRefGoogle Scholar
  51. 51.
    Khaper N, Kaur K, Li T, Farahmand F, Singal PK (2003) Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. Mol Cell Biochem 251:9–15CrossRefGoogle Scholar
  52. 52.
    Tappia PS, Adameova A, Dhalla NS (2018) Attenuation of diabetes-induced cardiac and subcellular defects by sulphur-containing amino acids. Curr Med Chem 25:336–345.  https://doi.org/10.2174/0929867324666170705115207 CrossRefGoogle Scholar
  53. 53.
    Tappia PS, Xu YJ, Rodriguez-Leyva D, Aroutiounova N, Dhalla NS (2013) Cardioprotective effects of cysteine alone or in combination with taurine in diabetes. Physiol Res 62:171–178Google Scholar
  54. 54.
    Verma A, Hill M, Bhayana S, Pichardo J, Singal P (1997) Role of glutathione in acute myocardial adaptation. Adapt Biol Med 1:399–408Google Scholar
  55. 55.
    Curtis JM, Hahn WS, Long EK, Burrill JS, Arriaga EA, Bernlohr DA (2012) Protein carbonylation and metabolic control systems. Trends Endocrinol Metab 23:399–406.  https://doi.org/10.1016/j.tem.2012.05.008 CrossRefGoogle Scholar
  56. 56.
    Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA (2008) Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 283:21837–21841.  https://doi.org/10.1074/jbc.R700019200 CrossRefGoogle Scholar
  57. 57.
    Manna P, Jain SK (2015) Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord 13:423–444.  https://doi.org/10.1089/met.2015.0095 CrossRefGoogle Scholar
  58. 58.
    Nobrega-Pereira S, Fernandez-Marcos PJ, Brioche T, Gomez-Cabrera MC, Salvador-Pascual A, Flores JM, Vina J, Serrano M (2016) G6PD protects from oxidative damage and improves healthspan in mice. Nat Commun 7:10894.  https://doi.org/10.1038/ncomms10894 CrossRefGoogle Scholar
  59. 59.
    Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575.  https://doi.org/10.1016/j.freeradbiomed.2010.12.006 CrossRefGoogle Scholar
  60. 60.
    Rani V, Deep G, Singh RK, Palle K, Yadav UC (2016) Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci 148:183–193.  https://doi.org/10.1016/j.lfs.2016.02.002 CrossRefGoogle Scholar
  61. 61.
    Mansournia MA, Ostadmohammadi V, Doosti-Irani A, Ghayour-Mobarhan M, Ferns G, Akbari H, Ghaderi A, Talari HR, Asemi Z (2018) The effects of vitamin D supplementation on biomarkers of inflammation and oxidative stress in diabetic patients: a systematic review and meta-analysis of randomized controlled trials. Horm Metab Res 50:429–440.  https://doi.org/10.1055/a-0630-1303 CrossRefGoogle Scholar
  62. 62.
    Holt EM, Steffen LM, Moran A, Basu S, Steinberger J, Ross JA, Hong CP, Sinaiko AR (2009) Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J Am Diet Assoc 109:414–421.  https://doi.org/10.1016/j.jada.2008.11.036 CrossRefGoogle Scholar
  63. 63.
    Jiang Y, Wu SH, Shu XO, Xiang YB, Ji BT, Milne GL, Cai Q, Zhang X, Gao YT, Zheng W, Yang G (2014) Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. J Acad Nutr Diet 114(700–8):e2.  https://doi.org/10.1016/j.jand.2013.12.019 Google Scholar
  64. 64.
    Koehler P, Wieser H (2013) Chemistry of Cereal Grains. In: Gobbetti M, Gänzle M (eds) Handbook on sourdough biotechnology. Springer, BostonGoogle Scholar
  65. 65.
    Gulvady AA, Brown RC, Bell JA (2013) Nutritional comparison of oats and other commonly consumed whole grains. Oats Nutr Technol.  https://doi.org/10.1002/9781118354100.ch4 Google Scholar
  66. 66.
    Fontaine J, Schirmer B, Horr J (2002) Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum. J Agric Food Chem 50:3902–3911CrossRefGoogle Scholar
  67. 67.
    Hackler LR (1985) Ceral protiens in human nutrition. In: Lasztity R, Hidvegi M (eds) Amino acid composition and biological value of cereal proteins. Springer, New tork, pp 81–104CrossRefGoogle Scholar
  68. 68.
    Alegre-Díaz J, Herrington W, López-Cervantes M, Gnatiuc L, Ramirez R, Hill M, Baigent C, McCarthy MI, Lewington S, Collins R, Whitlock G (2016) Diabetes and cause-specific mortality in Mexico City. N Engl J Med 375(20):1961–1971CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Preeti Kanikarla-Marie
    • 1
  • David Micinski
    • 1
  • Sushil K. Jain
    • 1
    Email author
  1. 1.Departments of PediatricsLouisiana State University Health Sciences CenterShreveportUSA

Personalised recommendations