Advertisement

Molecular and Cellular Biochemistry

, Volume 459, Issue 1–2, pp 1–6 | Cite as

Exosomes: cell-created drug delivery systems

  • Anastasia Familtseva
  • Nevena JeremicEmail author
  • Suresh C. Tyagi
Article

Abstract

Exosomes are 40- to 100- nm cell-originated vesicles derived from endocytic compartments that are released into almost all biological fluids. Exosomes are cell-created vesicles that inherit identical phospholipid membrane, explaining a wide application of electroporation as a technique for exosomes loading with exogenous cargoes. Another way of loading exosomes with therapeutic cargo is to overexpress a certain gene in exosome-donor cells or treat cell line with drug of interest that later will be gently enveloped into vesicles based on the process of EV biogenesis. Similarly, to visualize siRNA loading into exosomes as well as the exosomal product delivery to recipient cells, we have conducted an experiment where chemical-based exosome transfection was used. In this review, we discuss different ways of extracellular vesicle loading with exogenous cargoes and their advantages/limitations as well as novel alternative techniques of substance incorporation into nanoparticles.

Keywords

Exosomes Endothelial cells Electroporation 

Abbreviations

ncRNAs

Noncoding ribonucleic acid

mRNA

Messenger RNAs

DNA

Deoxyribonucleic acids

MVBs

Multivesicular bodies

miRNAs

MicroRNAs

siRNA

Small (or short) interfering RNA

RVG

Rabies viral glycoprotein

EVs

Extracellular vesicles

MV

Microvesicles

CML

Chronic myelogenous leukemia

MAPK1

Mitogen-activated protein kinase 1

MAEC

Mouse-aortic endothelial cell

HuR

Human antigen R

EXPLORs

Exosomes for protein loading via optically reversible protein–protein interactions

CRY2

Cryptochrome 2

CIB1

CRY-interacting basic-helix-loop-helix1

Notes

Acknowledgements

This work was supported by National Institute of Health Grants: HL74185, HL139047 and AR71789.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Pan BT, Johnstone R (1984) Selective externalization of the transferrin receptor by sheep reticulocytes in vitro. Response to ligands and inhibitors of endocytosis. J Biol Chem 259:9776–9782PubMedGoogle Scholar
  2. 2.
    Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–978CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteom Bioinform 13:17–24.  https://doi.org/10.1016/j.gpb.2015.02.001 CrossRefGoogle Scholar
  4. 4.
    Lotvall J, Valadi H (2007) Cell to cell signalling via exosomes through esRNA. Cell Adhes Migr 1:156–158CrossRefGoogle Scholar
  5. 5.
    Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM (2010) Exosomes: fit to deliver small RNA. Commun Integr Biol 3:447–450.  https://doi.org/10.4161/cib.3.5.12339 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920.  https://doi.org/10.1016/j.jprot.2010.06.006 CrossRefPubMedGoogle Scholar
  7. 7.
    Banizs AB, Huang T, Dryden K, Berr SS, Stone JR, Nakamoto RK, Shi W, He J (2014) In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery. Int J Nanomed 9:4223–4230.  https://doi.org/10.2147/IJN.S64267 CrossRefGoogle Scholar
  8. 8.
    Yamashita T, Takahashi Y, Takakura Y (2018) Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull 41:835–842.  https://doi.org/10.1248/bpb.b18-00133 CrossRefPubMedGoogle Scholar
  9. 9.
    Huang T, Deng CX (2019) Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. Int J Biol Sci 15:1–11.  https://doi.org/10.7150/ijbs.27796 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Suntres ZE, Smith MG, Momen-Heravi F, Hu J, Zhang X, Wu Y, Zhu H, Wang J, Zhou J, Kuo PW (2013) Therapeutic uses of exosomes. J Exosomes Microvesicles 1:1–8Google Scholar
  11. 11.
    Asadirad A, Hashemi SM, Baghaei K, Ghanbarian H, Mortaz E, Zali MR, Amani D (2019) Phenotypical and functional evaluation of dendritic cells after exosomal delivery of miRNA-155. Life Sci 219:152–162CrossRefPubMedGoogle Scholar
  12. 12.
    Kyuno D, Zhao K, Bauer N, Ryschich E, Zoller M (2019) Therapeutic targeting cancer-initiating cell markers by exosome miRNA: efficacy and functional consequences exemplified for claudin7 and EpCAM. Transl Oncol 12:191–199CrossRefPubMedGoogle Scholar
  13. 13.
    Pomatto MAC, Bussolati B, D’Antico S, Ghiotto S, Tetta C, Brizzi MF, Camussi G (2019) Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol Ther Methods Clin Dev 13:133–144CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Faruqu FN, Xu L, Al-Jamal KT (2018) Preparation of exosomes for siRNA delivery to cancer cells. J Vis Exp 142:e58814Google Scholar
  15. 15.
    Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546:498–503CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen SD, Kabanov AV, Batrakova EV (2016) Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed Nanotechnol Biol Med 12:655–664CrossRefGoogle Scholar
  17. 17.
    Ma T, Chen Y (2018) MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem cells Int 2018:3290372PubMedPubMedCentralGoogle Scholar
  18. 18.
    Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D (2017) Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 38:754–763.  https://doi.org/10.1038/aps.2017.12 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345.  https://doi.org/10.1038/nbt.1807 CrossRefPubMedGoogle Scholar
  20. 20.
    Cooper JM, Wiklander PB, Nordin JZ, Al-Shawi R, Wood MJ, Vithlani M, Schapira AH, Simons JP, El-Andaloussi S, Alvarez-Erviti L (2014) Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 29:1476–1485.  https://doi.org/10.1002/mds.25978 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lunavat TR, Jang SC, Nilsson L, Park HT, Repiska G, Lasser C, Nilsson JA, Gho YS, Lotvall J (2016) RNAi delivery by exosome-mimetic nanovesicles—implications for targeting c-Myc in cancer. Biomaterials 102:231–238.  https://doi.org/10.1016/j.biomaterials.2016.06.024 CrossRefPubMedGoogle Scholar
  22. 22.
    Greco KA, Franzen CA, Foreman KE, Flanigan RC, Kuo PC, Gupta GN (2016) PLK-1 silencing in bladder cancer by siRNA delivered with exosomes. Urology 91(241):e1–e7.  https://doi.org/10.1016/j.urology.2016.01.028 CrossRefGoogle Scholar
  23. 23.
    Lamichhane TN, Raiker RS, Jay SM (2015) Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm 12:3650–3657.  https://doi.org/10.1021/acs.molpharmaceut.5b00364 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kooijmans SA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJ, Schiffelers RM, Raemdonck K, Vader P (2013) Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release 172:229–238.  https://doi.org/10.1016/j.jconrel.2013.08.014 CrossRefPubMedGoogle Scholar
  25. 25.
    Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L, Wang A, Sylvester MD, Schmidt TL, Kaspar RL, Butte MJ, Matin AC, Contag CH (2015) Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA 112:E1433–E1442.  https://doi.org/10.1073/pnas.1418401112 CrossRefPubMedGoogle Scholar
  26. 26.
    Mizrak A, Bolukbasi MF, Ozdener GB, Brenner GJ, Madlener S, Erkan EP, Strobel T, Breakefield XO, Saydam O (2013) Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther 21:101–108.  https://doi.org/10.1038/mt.2012.161 CrossRefPubMedGoogle Scholar
  27. 27.
    Ohno SI, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M (2013) Systemically injected exosomes targeted to EGFR deliver antitumor MicroRNA to breast cancer cells. Mol Ther 21:185–191.  https://doi.org/10.1038/mt.2012.180 CrossRefPubMedGoogle Scholar
  28. 28.
    Bellavia D, Raimondo S, Calabrese G, Forte S, Cristaldi M, Patinella A, Memeo L, Manno M, Raccosta S, Diana P, Cirrincione G, Giavaresi G, Monteleone F, Fontana S, De Leo G, Alessandro R (2017) Interleukin 3-receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics 7:1333–1345.  https://doi.org/10.7150/thno.17092 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kalani A, Kamat PK, Chaturvedi P, Tyagi SC, Tyagi N (2014) Curcumin-primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia. Life Sci 107:1–7.  https://doi.org/10.1016/j.lfs.2014.04.018 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wahlgren J, De LKT, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40:e130CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV (2013) Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 11:88.  https://doi.org/10.1186/1478-811X-11-88 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3:22.  https://doi.org/10.1002/0471143030.cb0322s30 CrossRefPubMedGoogle Scholar
  33. 33.
    Antimisiaris S, Mourtas S, Papadia K (2017) Targeted si-RNA with liposomes and exosomes (extracellular vesicles): how to unlock the potential. Int J Pharm 525:293–312.  https://doi.org/10.1016/j.ijpharm.2017.01.056 CrossRefPubMedGoogle Scholar
  34. 34.
    Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M (2013) Sonoporation: gene transfer using ultrasound. World J Methodol 3:39–44.  https://doi.org/10.5662/wjm.v3.i4.39 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, Alhakeem SS, Oben K, Munagala R, Bondada S, Gupta RC (2017) Milk-derived exosomes for oral delivery of paclitaxel. Nanomed Nanotechnol Biol Med 13:1627–1636CrossRefGoogle Scholar
  36. 36.
    Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Controll Release 207:18–30CrossRefGoogle Scholar
  37. 37.
    Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X, Jiang X, Hou D, Chen X, Chen Y, Yang Z, Jin L, Jiang W, Tian C, Zhou G, Zen K, Zhang J, Zhang Y, Li J, Zhang CY (2015) Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep 5:17543CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18:1606–1614CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lamichhane TN, Jeyaram A, Patel DB, Parajuli B, Livingston NK, Arumugasaamy N, Schardt JS, Jay SM (2016) Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng 9:315–324CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    O’Loughlin AJ, Mager I, de Jong OG, Varela MA, Schiffelers RM, El Andaloussi S, Wood MJA, Vader P (2017) Functional delivery of lipid-conjugated siRNA by extracellular vesicles. Mol Ther 25:1580–1587.  https://doi.org/10.1016/j.ymthe.2017.03.021 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yim N, Choi C (2016) Extracellular vesicles as novel carriers for therapeutic molecules. BMB Rep 49:585–586CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yim N, Ryu SW, Choi K, Lee KR, Lee S, Choi H, Kim J, Shaker MR, Sun W, Park JH, Kim D, Heo WD, Choi C (2016) Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat Commun 7:12277.  https://doi.org/10.1038/ncomms12277 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physiology, Health Sciences Centre A-1210University of Louisville, School of MedicineLouisvilleUSA

Personalised recommendations