Advertisement

LCAL1 enhances lung cancer survival via inhibiting AMPK-related antitumor functions

  • Jun-Yu Li
  • Zhi-Qiang LuoEmail author
Article
  • 4 Downloads

Abstract

Lung cancer is one of the most common cancers and has been the most common cause of cancer deaths for several decades. Recently, lung cancer-associated lncRNA 1 (LCAL1) has been identified to be overexpressed in lung cancer tissues, while inhibiting LCAL1 expression has shown potential to inhibiting lung cancer growth. However, the molecular mechanism between LCAL1 and lung cancer cell survival remains poorly understood. In the present study, we provided the first evidence that LCAL1 may support lung cancer survival via inhibiting the activity of AMP-activated protein kinase (AMPK). According to our results, LCAL1 may physically interact with the catalytic subunit of tumor suppressor AMPK, prevent AMPK activation by upstream kinase (liver kinase B1), and thus inhibit the downstream AMPK signaling network. Our study revealed that overexpressed LCAL1 may induce aerobic glycolysis in lung cancer cells through AMPK/HIF1α axis, enhance protein synthesis through AMPK/mTOR/S6K axis, and suppress autophagic cell death through AMPK/ULK1 pathway. All these alterations supported rapid proliferation of lung cancer cells, while knockdown of LCAL1 expression demonstrated the potential of inhibiting lung cancer growth by reversing the tumorigenic phenotypes triggered by the loss of AMPK activity, and could become a promising therapeutic strategy for lung cancer treatment.

Keywords

Lung cancer LncRNA LCAL1 AMPK 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Perkel JM (2013) Visiting “noncodarnia”. Biotechniques 54:301:303–304.  https://doi.org/10.2144/000114037 Google Scholar
  2. 2.
    Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307.  https://doi.org/10.1016/j.cell.2013.02.012 CrossRefGoogle Scholar
  3. 3.
    Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346.  https://doi.org/10.1038/nature10887 CrossRefPubMedGoogle Scholar
  4. 4.
    Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, Kaul R, Stamatoyannopoulos JA (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–1195.  https://doi.org/10.1126/science.1222794 CrossRefPubMedGoogle Scholar
  5. 5.
    Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, Ronning P, Reuland B, Guenther K, Beadnell TC, Essig J, Otto GM, O’Sullivan MG, Largaespada DA, Schwertfeger KL, Marahrens Y, Kawakami Y, Bagchi A (2014) PVT1 dependence in cancer with MYC copy-number increase. Nature 512:82–86.  https://doi.org/10.1038/nature13311 CrossRefPubMedGoogle Scholar
  6. 6.
    Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK, Mulholland S, Leongamornlert DA, Edwards SM, Morrison J, Field HI, Southey MC, Severi G, Donovan JL, Hamdy FC, Dearnaley DP, Muir KR, Smith C, Bagnato M, Ardern-Jones AT, Hall AL, O’Brien LT, Gehr-Swain BN, Wilkinson RA, Cox A, Lewis S, Brown PM, Jhavar SG, Tymrakiewicz M, Lophatananon A, Bryant SL, Collaborators UKGPCS, British Association of Urological Surgeons’ Section of O, Collaborators UKPS, Horwich A, Huddart RA, Khoo VS, Parker CC, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Fisher C, Jamieson C, Cooper CS, English DR, Hopper JL, Neal DE, Easton DF (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40:316–321.  https://doi.org/10.1038/ng.90 CrossRefPubMedGoogle Scholar
  7. 7.
    Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, Penegar S, Chandler I, Gorman M, Wood W, Barclay E, Lubbe S, Martin L, Sellick G, Jaeger E, Hubner R, Wild R, Rowan A, Fielding S, Howarth K, Consortium C, Silver A, Atkin W, Muir K, Logan R, Kerr D, Johnstone E, Sieber O, Gray R, Thomas H, Peto J, Cazier JB, Houlston R (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39:984–988.  https://doi.org/10.1038/ng2085 CrossRefPubMedGoogle Scholar
  8. 8.
    Pasmant E, Sabbagh A, Vidaud M, Bieche I (2011) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25:444–448.  https://doi.org/10.1096/fj.10-172452 CrossRefPubMedGoogle Scholar
  9. 9.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin.  https://doi.org/10.3322/caac.21492 PubMedGoogle Scholar
  10. 10.
    Gibb EA, Warren RL, Wilson GW, Brown SD, Robertson GA, Morin GB, Holt RA (2015) Activation of an endogenous retrovirus-associated long non-coding RNA in human adenocarcinoma. Genome Med 7:22.  https://doi.org/10.1186/s13073-015-0142-6 CrossRefPubMedGoogle Scholar
  11. 11.
    Tao H, Yang JJ, Zhou X, Deng ZY, Shi KH, Li J (2016) Emerging role of long noncoding RNAs in lung cancer: Current status and future prospects. Respir Med 110:12–19.  https://doi.org/10.1016/j.rmed.2015.10.006 CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang EB, Yin DD, Sun M, Kong R, Liu XH, You LH, Han L, Xia R, Wang KM, Yang JS, De W, Shu YQ, Wang ZX (2014) P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis 5:e1243.  https://doi.org/10.1038/cddis.2014.201 CrossRefPubMedGoogle Scholar
  13. 13.
    Shen L, Chen L, Wang Y, Jiang X, Xia H, Zhuang Z (2015) Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. J Neurooncol 121:101–108.  https://doi.org/10.1007/s11060-014-1613-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Weber DG, Johnen G, Casjens S, Bryk O, Pesch B, Jockel KH, Kollmeier J, Bruning T (2013) Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res Notes 6:518.  https://doi.org/10.1186/1756-0500-6-518 CrossRefPubMedGoogle Scholar
  15. 15.
    Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Gross M, Zornig M, MacLeod AR, Spector DL, Diederichs S (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73:1180–1189.  https://doi.org/10.1158/0008-5472.CAN-12-2850 CrossRefPubMedGoogle Scholar
  16. 16.
    Nie FQ, Sun M, Yang JS, Xie M, Xu TP, Xia R, Liu YW, Liu XH, Zhang EB, Lu KH, Shu YQ (2015) Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther 14:268–277.  https://doi.org/10.1158/1535-7163.MCT-14-0492 CrossRefPubMedGoogle Scholar
  17. 17.
    Liu Z, Sun M, Lu K, Liu J, Zhang M, Wu W, De W, Wang Z, Wang R (2013) The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21(WAF1/CIP1) expression. PLoS One 8:e77293.  https://doi.org/10.1371/journal.pone.0077293 CrossRefPubMedGoogle Scholar
  18. 18.
    White NM, Cabanski CR, Silva-Fisher JM, Dang HX, Govindan R, Maher CA (2014) Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biol 15:429.  https://doi.org/10.1186/s13059-014-0429-8 CrossRefPubMedGoogle Scholar
  19. 19.
    Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48:e245.  https://doi.org/10.1038/emm.2016.81 CrossRefPubMedGoogle Scholar
  20. 20.
    Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023.  https://doi.org/10.1038/ncb2329 CrossRefPubMedGoogle Scholar
  21. 21.
    Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590CrossRefPubMedGoogle Scholar
  22. 22.
    Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6:304–312.  https://doi.org/10.1038/nrd2272 CrossRefPubMedGoogle Scholar
  23. 23.
    Mao K, Klionsky DJ (2011) AMPK activates autophagy by phosphorylating ULK1. Circ Res 108:787–788.  https://doi.org/10.1161/RES.0b013e3182194c29 CrossRefPubMedGoogle Scholar
  24. 24.
    Mack HI, Zheng B, Asara JM, Thomas SM (2012) AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 8:1197–1214.  https://doi.org/10.4161/auto.20586 CrossRefPubMedGoogle Scholar
  25. 25.
    Liu X, Xiao ZD, Han L, Zhang J, Lee SW, Wang W, Lee H, Zhuang L, Chen J, Lin HK, Wang J, Liang H, Gan B (2016) LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat Cell Biol 18:431–442.  https://doi.org/10.1038/ncb3328 CrossRefPubMedGoogle Scholar
  26. 26.
    Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, Mamer OA, Avizonis D, DeBerardinis RJ, Siegel PM, Jones RG (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17:113–124.  https://doi.org/10.1016/j.cmet.2012.12.001 CrossRefPubMedGoogle Scholar
  27. 27.
    Huang SW, Kao JK, Wu CY, Wang ST, Lee HC, Liang SM, Chen YJ, Shieh JJ (2014) Targeting aerobic glycolysis and HIF-1alpha expression enhance imiquimod-induced apoptosis in cancer cells. Oncotarget 5:1363–1381.  https://doi.org/10.18632/oncotarget.1734 PubMedGoogle Scholar
  28. 28.
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigo R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789.  https://doi.org/10.1101/gr.132159.111 CrossRefPubMedGoogle Scholar
  29. 29.
    Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM, Wu YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208.  https://doi.org/10.1038/ng.3192 CrossRefPubMedGoogle Scholar
  30. 30.
    Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927.  https://doi.org/10.1101/gad.17446611 CrossRefPubMedGoogle Scholar
  31. 31.
    Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, Zhang MQ, Sedel F, Jourdren L, Coulpier F, Triller A, Spector DL, Bessis A (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29:3082–3093.  https://doi.org/10.1038/emboj.2010.199 CrossRefPubMedGoogle Scholar
  32. 32.
    Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938.  https://doi.org/10.1016/j.molcel.2010.08.011 CrossRefPubMedGoogle Scholar
  33. 33.
    Wu XS, Wang XA, Wu WG, Hu YP, Li ML, Ding Q, Weng H, Shu YJ, Liu TY, Jiang L, Cao Y, Bao RF, Mu JS, Tan ZJ, Tao F, Liu YB (2014) MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biol Ther 15:806–814.  https://doi.org/10.4161/cbt.28584 CrossRefPubMedGoogle Scholar
  34. 34.
    Hu L, Wu Y, Tan D, Meng H, Wang K, Bai Y, Yang K (2015) Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 34:7.  https://doi.org/10.1186/s13046-015-0123-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OncologyJiangxi Cancer HospitalNanchangPeople’s Republic of China

Personalised recommendations