Hyperglycaemia cause vascular inflammation through advanced glycation end products/early growth response-1 axis in gestational diabetes mellitus

  • Barathi Rajaraman
  • Nirupama Ramadas
  • Sundar Krishnasamy
  • Vidya Ravi
  • Atima Pathak
  • C. S. Devasena
  • Krishnan Swaminathan
  • Arunkumar Ganeshprasad
  • Ashok Ayyappa Kuppuswamy
  • Srinivasan VedanthamEmail author


Hyperglycaemia during pregnancy is the main reason for developing diabetes mediated vascular complications. Advanced glycation end products (AGEs) are formed due to non-enzymatic glycation of proteins, lipids and nucleic acids during hyperglycaemia. It has the potential to damage vasculature by modifying the substrate or by means of AGEs and receptor of AGE (RAGE) interaction. It has been linked with the pathogenesis of various vascular diseases including coronary heart disease, atherosclerosis, restenosis etc. This study was carried out to investigate the role of AGEs-EGR-1 pathway in gestational diabetes mellitus (GDM) vascular inflammation. Human umbilical vein endothelial cells (HuVECs) isolated from normal glucose tolerant mothers were subjected to various treatments including high glucose, silencing of early growth response (EGR)-1, blockade of protein kinase C (PKC) β, blocking extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), and treatment with AGEs and assayed for EGR-1, tissue factor (TF) and soluble intercellular adhesion molecule (sICAM)-1. Similarly, umbilical vein endothelial cells isolated from normal and GDM mothers were assayed for EGR-1, TF, and sICAM-1. There was a significant increase in EGR-1 and TF levels in HuVECs isolated form GDM mother’s umbilical cord and normal HuVECs treated with high glucose condition. This was accompanied by elevated levels of sICAM-1 in high glucose treated cells. Our results revealed AGE-mediated activation of EGR-1 and its downstream genes via PKC βII and ERK1/2 signaling pathway. The present study demonstrated a novel mechanism of AGEs/ PKC βII/ ERK1/2/EGR-1 pathway in inducing vascular inflammation in GDM.


EGR-1 Advanced glycation end products (AGEs) Gestational diabetes mellitus (GDM) Vascular inflammation 



We would like to thank our project (SB/FT/LS-432/2012) funding agency - Department of Science and Technology India and TRR fund from SASTRA University for supporting this research. We thank all the nursing staff, physician assistants for helping us with the sample collection as well as for providing patient’s clinical details.

Supplementary material

11010_2019_3503_MOESM1_ESM.doc (58 kb)
Supplementary material 1 (DOC 58 KB)


  1. 1.
    International Diabetes Federation. IDF Diabetes Atlas, 8th edn. (2017) Brussels, Belgium: International Diabetes Federation.
  2. 2.
    Buchanan TA, Xiang A, Kjos SL, Watanabe R (2007) What is gestational diabetes? Diabetes Care 30(Supplement 2):105–111CrossRefGoogle Scholar
  3. 3.
    Seshiah V, Balaji V, Madhuri SB, Sanjeevi CB, Green A (2004) Gestational diabetes mellitus in India. J Assoc Physicians India 52:707–711Google Scholar
  4. 4.
    Midha T, Nath B, Kumari R, Rao YK, Pandey U (2012) Childhood obesity in India: a meta-analysis. Indian J Pediatr 79(7):945–948CrossRefGoogle Scholar
  5. 5.
    Yajnik CS, Deshmukh US (2008) Maternal nutrition, intrauterine programming and consequential risks in the offspring. Rev Endocr Metab Disord 9(3):203–211CrossRefGoogle Scholar
  6. 6.
    Kleiblova P, Dostalova I, Bartlova M et al (2010) Expression of adipokines and estrogen receptors in adipose tissue and placenta of patients with gestational diabetes mellitus. Mol Cell Endocrinol 314(1):150–156CrossRefGoogle Scholar
  7. 7.
    Kirwan JP, Hauguel-De Mouzon S, Lepercq J et al (2002) TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 51(7):2207–2213CrossRefGoogle Scholar
  8. 8.
    Pantham P, Aye ILMH, Powell TL (2015) Inflammation in maternal obesity and gestational diabetes mellitus. Placenta 36(7):709–715CrossRefGoogle Scholar
  9. 9.
    Atègbo JM, Grissa O, Yessoufou A (2006) Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J Clin Endocrinol Metab 91(10):4137–4143CrossRefGoogle Scholar
  10. 10.
    Morisset AS, Dubé MC, Côté JA, Robitaille J, Weisnagel SJ, Tchernof A (2011) Circulating interleukin-6 concentrations during and after gestational diabetes mellitus. Acta Obstet Gynecol Scand 90(5):524–530CrossRefGoogle Scholar
  11. 11.
    Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18(1):1–14CrossRefGoogle Scholar
  12. 12.
    Ikeda K, Higashi T, Sano H, Jinnouchi Y, Yoshida M, Araki T, Ueda S, Horiuchi S (1996) N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry 35:8075–8083CrossRefGoogle Scholar
  13. 13.
    Lieuw-A-Fa MLM, van Hinsbergh VWM, Teerlink T, Barto R, Twisk J, Stehouwer CDA, Schalkwijk CG (2004) Increased levels of Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine in type 1 diabetic patients with impaired renal function: correlation with markers of endothelial dysfunction. Nephrol Dial Transpl 19:631–636CrossRefGoogle Scholar
  14. 14.
    Ghanem AA, Elewa A, Arafa LF (2011) Pentosidine and N-carboxymethyl-lysine: biomarkers for type 2 diabetic retinopathy. Eur J Ophthalmol 21(1):48–54CrossRefGoogle Scholar
  15. 15.
    Wautier MP, Massin P, Guillausseau PJ, Huijberts M, Levy B, Boulanger E, Laloi-Michelin M, Wautier JL (2003) N(carboxymethyl)lysine as a biomarker for microvascular complications in type 2 diabetic patients. Diabetes Metab 29(1):44–52CrossRefGoogle Scholar
  16. 16.
    Ahmed KA, Muniandy S, Ismail IS (2007) Role of N ε-(Carboxymethyl) lysine in the development of ischemic heart disease in Type 2 diabetes mellitus. J Clin Biochem Nutr 41(2):97–105CrossRefGoogle Scholar
  17. 17.
    Yamagishi S (2011) Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol 46:217–224CrossRefGoogle Scholar
  18. 18.
    Yamagishi S, Imaizumi T (2005) Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des 11:2279–2299CrossRefGoogle Scholar
  19. 19.
    Yan SF, Harja E, Andrassy M, Fujita T, Schmid AM (2009) Protein kinase C β/early growth response-1 pathway: a key player in ischemia, atherosclerosis, and restenosis. J Am Coll Cardiol 48(9):A47–A55CrossRefGoogle Scholar
  20. 20.
    Vedantham S, Thiagarajan D, Ananthakrishnan R et al (2014) Aldose reductase drives hyperacetylation of Egr-1 in hyperglycemia and consequent upregulation of proinflammatory and prothrombotic signals. Diabetes 63(2):761–774CrossRefGoogle Scholar
  21. 21.
    Shi L, Kishore R, McMullen MR, Nagy LE (2002) Lipopolysaccharide stimulation of ERK1/2 increases TNF-alpha production via Egr-1. Am J Physiol Cell Physiol 282(6):1205–1211CrossRefGoogle Scholar
  22. 22.
    Yao J, Mackman N, Thomas S, Edgington, Fan S (1997) Lipopolysaccharide induction of the tumor necrosis factor-a promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kB transcription factor. J Biol Chem 272(28):17795–17801CrossRefGoogle Scholar
  23. 23.
    Zhang K, Cao J, Dong R, Du J (2013) Early growth response protein 1 promotes restenosis by upregulating intercellular adhesion molecule-1 in vein graft. Oxid Med Cell Longev. Google Scholar
  24. 24.
    Maltzman JS, Carman JA, Monroe JG (1996) Transcriptional regulation of the Icam-1 gene in antigen receptor- and phorbol ester-stimulated B lymphocytes: role for transcription factor EGR1. J Exp Med 83:1747–1759CrossRefGoogle Scholar
  25. 25.
    Cho SJ, Kang MJ, Homer RJ et al (2006) Role of early growth response-1 (Egr-1) in interleukin-13-induced inflammation and remodeling. J Biol Chem 281:8161–8168CrossRefGoogle Scholar
  26. 26.
    Pawlinski R, Pedersen B, Kehrle B, Aird WC, Frank RD, Guha M, Mackman N (2003) Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model. Blood 101(10):3940–3947CrossRefGoogle Scholar
  27. 27.
    Meng Y, Chen C, Tian C, Du J, Li H (2015) Angiotensin II-induced Egr-1 expression is suppressed by peroxisome proliferator-activated receptor-γ ligand 15d-PGJ2 in macrophages. Cell Physiol Biochem 35:689–698CrossRefGoogle Scholar
  28. 28.
    Dickinson MG, Bartelds B, Molema G et al (2011) Egr-1 expression during neointimal development in flow-associated pulmonary hypertension. Am J Pathol 179(5):2199–2209CrossRefGoogle Scholar
  29. 29.
    Liu C, Yao J, Mercola D, Adamson E (2000) The transcription factor EGR-1 directly transactivates the fibronectin gene and enhances attachment of human glioblastoma cell line U251. J Biol Chem 275:20315–20323CrossRefGoogle Scholar
  30. 30.
    Liao H, Hyman MC, Lawrence DA, Pinsky DJ (2006) Molecular regulation of the PAI-1 gene by hypoxia: contributions of Egr-1, HIF-1alpha, and C/EBP alpha. FASEB J 21(3):935–949CrossRefGoogle Scholar
  31. 31.
    Yan SF, Zou YS, Gao Y et al (1998) Tissue factor transcription driven by Egr-1 is a critical mechanism of murine pulmonary fibrin deposition in hypoxia. Proc Natl Acad Sci USA 95:8298–8303CrossRefGoogle Scholar
  32. 32.
    Yan SF, Lu J, Zou YS et al (1999) Hypoxia-associated induction of early growth response-1 gene expression. J Biol Chem 274:15030–15040CrossRefGoogle Scholar
  33. 33.
    Lo L, Cheng J, Chiu J, Wung B, Liu Y, Wand DL (2001) Endothelial exposure to hypoxia induces Egr-1 expression involving PKCa-mediated Ras/Raf-1/ERK1/2 pathway. J Cellu Physiol 188:304–312CrossRefGoogle Scholar
  34. 34.
    McCaffrey TA, Fu C, Du B et al (2000) High-level expression of Egr-1 and Egr-1–inducible genes in mouse and human atherosclerosis. J Clin Invest 105(5):653–662CrossRefGoogle Scholar
  35. 35.
    Wang X, Athayde N, Trudinger B (2006) Egr-1 transcription activation exists in placental endothelium when vascular disease is present. Int J Obst Gynaec 683–687Google Scholar
  36. 36.
    Liao H, He H, Chen Y, Zeng F, Huang J, Wu L, Chen Y (2014) Effects of long-term serial cell passaging on cell spreading, migration, and cell-surface ultrastructures of cultured vascular endothelial cells. Cytotechnology 66:229–238CrossRefGoogle Scholar
  37. 37.
    Nigris VD, Pujadas G, Sala LL, Testa R, Genovese S, Ceriello (2015) A short-term high glucose exposure impairs insulin signaling in endothelial cells. Cardiovasc Diabetol 14:114CrossRefGoogle Scholar
  38. 38.
    Leiva A, Pardo F, Ramírez MA, Farías M, Casanello P, Sobrevia L (2011) Fetoplacental vascular endothelial dysfunction as an early phenomenon in the programming of human adult diseases in subjects born from gestational diabetes mellitus or obesity in pregnancy. Exp Diabetes Res. Google Scholar
  39. 39.
    González M, Muñoz E, Puebla C et al (2011) Maternal and fetal metabolic dysfunction in pregnancy diseases associated with vascular oxidative and nitrative stress. In: Matata BM, Elahi M (eds) The molecular basis for origin of fetal congenital abnormalities and maternal health: an overview of association with oxidative stress. Bentham USA. Chapter 8, pp 98–115Google Scholar
  40. 40.
    Silverman ES, Collins T (1999) Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol 154:665–670CrossRefGoogle Scholar
  41. 41.
    Gururajan M, Simmons A, Dasu T, Spear BT, Calulot C et al (2008) Early growth response regulate B cell development, proliferation, and immune response. J Immunol 181:4590–4602CrossRefGoogle Scholar
  42. 42.
    Du B, Fu C, Kent KC (2000) Elevated Egr-1 in human atherosclerotic cells transcriptionally represses the transforming growth factor-β type II receptor. J Biol Chem 275:39039–39047CrossRefGoogle Scholar
  43. 43.
    Karthikkeyan G, Nagaraj NR, Seeneevasan A, Natarajan SK, Vedantham S, Coral K (2018) Hyperglycemia induced early growth response-1 regulates vascular dysfunction in human retinal endothelial cells. Microvasc Res 117:37–43CrossRefGoogle Scholar
  44. 44.
    Kulkarni H, Mamtani M, Peralta J (2016) Soluble forms of intercellular and vascular cell adhesion molecules independently predict progression to type 2 diabetes in Mexican American families. PLoS ONE 11(3):0151177. CrossRefGoogle Scholar
  45. 45.
    Blann AD, McCollum CN (1998) Circulating ICAM-1 in peripheral arterial disease as a predictor of adverse events. The Lancet 351:1135CrossRefGoogle Scholar
  46. 46.
    Mackman N (2004) Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 24:1015–1022CrossRefGoogle Scholar
  47. 47.
    Boganov VY, Osterund B (2010) Cardiovascular complications of diabetes mellitus: the tissue factor perspective. Thromb Res 125:112–118CrossRefGoogle Scholar
  48. 48.
    Avci1 E, Uzeli S (2016) The role of adhesion molecules and cytokines in patients with diabetic nephropathy. Biomed Res Special Issue: S343-S348Google Scholar
  49. 49.
    Elżbieta P, Mierzyński R, Szymula D, Bożena L, Oleszczuk L (2016) Intercellular adhesion molecule and endogenous NOS inhibitor: asymmetric dimethylarginine in pregnant women with gestational diabetes mellitus. J Diabetes Res. Google Scholar
  50. 50.
    Bavendiek U, Libby P, Kilbride M, Reynolds R, Mackman N, Schönbeck U (2002) Induction of tissue factor expression in human endothelial cells by CD40 ligand is mediated via activator protein 1, nuclear factor κB, and Egr-1. J Biol Chem 277:25032–25039CrossRefGoogle Scholar
  51. 51.
    Fasshauer M, Blüher M, Stumvoll M (2014) Adipokines in gestational diabetes. Lancet Diabetes Endocrinol 2:488–499CrossRefGoogle Scholar
  52. 52.
    Lowe LP, Metzger BE, Lowe WL, Dyer AR, McDade TW, McIntyre HD (2010) Inflammatory mediators and glucose in pregnancy: results from a subset of the hyperglycemia and adverse pregnancy outcome (HAPO) study. J Clin Endocrinol Metab 95:5427–5434CrossRefGoogle Scholar
  53. 53.
    Boden G, Vaidyula VR, Homko C, Cheung P, Rao AK (2007) Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab 92:4352–4358CrossRefGoogle Scholar
  54. 54.
    Ceriello A (1993) Coagulation activation in diabetes mellitus: the role of hyperglycaemia and therapeutic prospects. Diabetologia 36(11):1119–1125CrossRefGoogle Scholar
  55. 55.
    Stegenga ME, van der Crabben SN, Levi M, de Vos AF, Tanck MW, Sauerwein HP, van der Poll T (2006) Hyperglycemia stimulates coagulation, whereas hyperinsulinemia impairs fibrinolysis in healthy humans. Diabetes 55(6):1807–1812CrossRefGoogle Scholar
  56. 56.
    Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A (2011) The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 15(12):3061–3100CrossRefGoogle Scholar
  57. 57.
    Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295(14):1681–1687CrossRefGoogle Scholar
  58. 58.
    Yaghini N, Mahmoodi M, Asadikaram R, Hassanshahi H, Khoramdelazad H, Arababadi MK (2011) Serum levels of interleukin 10 (IL-10) in patients with type 2 diabetes. Iran Red Crescent Med J 13(10):752Google Scholar
  59. 59.
    Lindberg S, Jensen JS, Pedersen SH, Galatius S, Frystyk J, Flyvbjerg A, Bjerre M, Mogelvang R (2014) Low adiponectin levels and increased risk of type 2 diabetes in patients with myocardial infarction. Diabetes Care 37(11):3003–3008CrossRefGoogle Scholar
  60. 60.
    Basta G, Schmidt AM, Caterina R (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63:582–592CrossRefGoogle Scholar
  61. 61.
    Yang K, Wang XQ, He YS, Lu L, Chen QJ, Liu J, Shen AT (2010) Advanced glycation end products induce chemokine/cytokine production via activation of p38 pathway and inhibit proliferation and migration of bone marrow mesenchymal stem cells. Cardiovasc Diabetol 9:66CrossRefGoogle Scholar
  62. 62.
    Ramasamy R, Yan SF, Schmidt AM (2011) Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 1243:88–102CrossRefGoogle Scholar
  63. 63.
    Yamamoto Y, Yamamoto H (2011) Receptor for advanced glycation end-products-mediated inflammation and diabetic vascular complications. J Diabetes Investig 2(3):155–157CrossRefGoogle Scholar
  64. 64.
    Lappas M, Permezel M, Rice GE (2007) Advanced glycation endproducts mediate pro-inflammatory actions in human gestational tissues via nuclear factor-kappaB and extracellular signal-regulated kinase ½. J Endocrinol 193(2):269–277CrossRefGoogle Scholar
  65. 65.
    Chekir C, Nakatsuka M, Noguchi S, Konishi H, Kamada Y, Sasaki A, Hao L, Hiramatsu Y (2006) Accumulation of advanced glycation end products in women with preeclampsia: possible involvement of placental oxidative and nitrative stress. Placenta 27(2–3):225–233CrossRefGoogle Scholar
  66. 66.
    Scivittaro V, Ganz MB, Weiss MF (2000) AGEs induce oxidative stress and activate protein kinase C-βII in neonatal mesangial cells. Am J Physiol-Renal Physiol 278:676–683CrossRefGoogle Scholar
  67. 67.
    Harja E, Hudson BI, Zou YS, Lu Y, Schmidt AM, Yan SF (2005) PKC beta/Egr-1: a central axis in atherosclerosis. FASEB J 19:387.20Google Scholar
  68. 68.
    Rong J, Qiu HX, Wang SP (2000) Advanced glycosylation end products, protein kinase C and renal alterations in diabetic rats. Chin Med J (Engl) 113(12):1087–1091Google Scholar
  69. 69.
    Yoon YW, Kang TS, Lee BK et al (2008) Pathobiological role of advanced glycation endproducts via mitogen-activated protein kinase dependent pathway in the diabetic vasculopathy. Exp Mol Med 40(4):398–406CrossRefGoogle Scholar
  70. 70.
    Chang JS, Wendt T, Qu W, Kong L, Zou YS, Schmidt AM, Yan SF (2008) Oxygen deprivation triggers upregulation of early growth response-1 by the receptor for advanced glycation end products. Circ Res 102(8):905–913CrossRefGoogle Scholar
  71. 71.
    Xu Y, Toure F, Qu W et al (2010) Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J Biol Chem 285(30):23233–23240CrossRefGoogle Scholar
  72. 72.
    Zeng S, Dun H, Ippagunta N, Rosario R, Zhang QY, Lefkowitch J, Yan SF, Schmidt AM, Emond JC (2009) Receptor for advanced glycation end product (RAGE)-dependent modulation of early growth response-1 in hepatic ischemia/reperfusion injury. J Hepatol 50(5):929–936CrossRefGoogle Scholar
  73. 73.
    Yu X, Shen N, Zhang ML, Pan FY, Wang C, Jia WP, Liu C, Gao Q, Gao X, Xue B, Li CJ (2011) Egr-1 decreases adipocyte insulin sensitivity by tilting PI3K/Akt and MAPK signal balance in mice. EMBO J 30:3754–3765CrossRefGoogle Scholar
  74. 74.
    Fujita T, Asai T, Andrassy M, Stern DM, Pinsky DJ, Zou YS, Okada M, Naka Y, Schmidt AM, Yan SF (2004) PKC beta regulates ischemia/reperfusion injury in the lung. J Clin Invest 113(11):1615–1623CrossRefGoogle Scholar
  75. 75.
    Yoon YJ, Kim DK, Yoon CM, Park J, Kim YK, Roh TY, Gho YS (2014) Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways. PLoS ONE 9(12):115170CrossRefGoogle Scholar
  76. 76.
    Hasan RN, Phukan S, Harada S (2003) Differential regulation of early growth response gene-1 expression by insulin and glucose in vascular endothelial cells. Arterioscler Thromb Vasc Biol 23:988–993CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Barathi Rajaraman
    • 1
  • Nirupama Ramadas
    • 1
  • Sundar Krishnasamy
    • 1
  • Vidya Ravi
    • 2
  • Atima Pathak
    • 3
  • C. S. Devasena
    • 3
  • Krishnan Swaminathan
    • 4
  • Arunkumar Ganeshprasad
    • 1
  • Ashok Ayyappa Kuppuswamy
    • 1
  • Srinivasan Vedantham
    • 1
    Email author
  1. 1.School of Chemical and BiotechnologySASTRA Deemed to be UniversityThanjavurIndia
  2. 2.Dept. of Obstetrics & GynaecologyK.A.P. Vishwanatham Government Medical CollegeTrichyIndia
  3. 3.Dept. of Obstetrics & GynaecologyKovai Medical Centre and HospitalCoimbatoreIndia
  4. 4.Dept. of EndocrinologyKovai Medical Centre and HospitalCoimbatoreIndia

Personalised recommendations