Heat shock protein 60 negatively regulates the biological functions of ubiquitin-like protein MNSFβ in macrophages

  • Morihiko NakamuraEmail author
  • Kaori Notsu
  • Mai Nakagawa


Monoclonal nonspecific suppressor factor β (MNSFβ) is a ubiquitously expressed ubiquitin-like protein known to be involved in various biological functions. Previous studies have demonstrated that MNSFβ covalently modify its target proteins including Bcl-G, a proapoptotic protein. In this study, we purified a 65 kDa MNSFβ adduct from mouse liver lysates by sequential chromatography on DEAE and glutathione S-transferase (GST)-fusioned MNSFβ immobilized on glutathione-Sepharose beads in the presence of ATP. MALDI-TOF mass spectrometry fingerprinting revealed that this MNSFβ adduct consists of an 8.5 kDa MNSFβ and heat shock protein 60 (HSP60), a mitochondrial protein involved in protein folding. Fingerprinting analysis of the MNSFβ adduct demonstrates that MNSFβ conjugates to HSP60 with a linkage between the C-terminal Gly74 and Lys481. HSP60 siRNA neutralized the inhibition of apoptosis by MNSFβ siRNA in LPS/IFNγ-stimulated Raw264.7, a murine macrophage cell line. HSP60 siRNA also down-regulated the enhancement of TNFα production by MNSFβ siRNA in LPS-stimulated Raw264.7 cells. Here, we firstly report that MNSFβ activity is negatively regulated by molecular chaperone.


Ubiquitin-like protein Molecular chaperone Inflammation responses 



Monoclonal nonspecific suppressor factor




Interferon γ


Heat shock protein 60



This work was supported by a grant-in-aid for scientific research (C) to M.N. (17K07335) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no competing interest.


  1. 1.
    Mahajan R, Delphin RC, Guan T (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107CrossRefGoogle Scholar
  2. 2.
    Marx J (2005) SUMO wrestles its way to prominence in the cell. Science 307:36–839CrossRefGoogle Scholar
  3. 3.
    Jentsch S, McGrath JP, Varshavsky A (1987) The yeast DNA repair gene RAD6 encodes a ubiquitin conjugating enzyme. Nature 329:131–134CrossRefGoogle Scholar
  4. 4.
    Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533CrossRefGoogle Scholar
  5. 5.
    Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC, Conaway JW, Elledge SJ, Harper JW (1999) Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284:662–665CrossRefGoogle Scholar
  6. 6.
    Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178CrossRefGoogle Scholar
  7. 7.
    Passmore LA, Barford D (2004) Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J 379:513–525CrossRefGoogle Scholar
  8. 8.
    Nakamura M, Tanigawa Y (2003) Characterization of ubiquitin-like polypeptide acceptor protein, a novel pro-apoptotic member of the Bcl2 family. Eur J Biochem 270:4052–4058CrossRefGoogle Scholar
  9. 9.
    Nakamura M, Yamaguchi S (2006) The ubiquitin-like protein MNSFbeta regulates ERK-MAPK cascade. J Biol Chem 281:16861–16869CrossRefGoogle Scholar
  10. 10.
    Nakagawa M, Watanabe N, Nakamura M (2013) Ubiquitin-like protein MNSFβ covalently binds to Bcl-G and enhances lipopolysaccharide/interferon γ-induced apoptosis in macrophages. FEBS J 280:1281–1293CrossRefGoogle Scholar
  11. 11.
    Nakamura M, Shimosaki S (2009) The ubiquitin-like protein monoclonal nonspecific suppressor factor beta conjugates to endophilin II and regulates phagocytosis. FEBS J 276:6355–6363CrossRefGoogle Scholar
  12. 12.
    Belles C, Kuhl A, Nosheny R, Carding SR (1999) Plasma membrane expression of heat shock protein 60 in vivo in response to infection. Infect Immun 67:4191–4200PubMedPubMedCentralGoogle Scholar
  13. 13.
    Feng H, Zeng Y, Whitesell L, Katsanis E (2001) Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 97:505–3512CrossRefGoogle Scholar
  14. 14.
    Notsu K, Nakagawa M, Nakamura M (2016) Ubiquitin-like protein MNSFβ noncovalently binds to molecular chaperone HSPA8 and regulates osteoclastogenesis. Mol Cell Biochem 421:149–156CrossRefGoogle Scholar
  15. 15.
    Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677CrossRefGoogle Scholar
  16. 16.
    Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858CrossRefGoogle Scholar
  17. 17.
    Kaur I, Voss SD, Gupta RS, Schell K, Fisch P, Sondel PM (1993) Human peripheral gamma delta T cells recognize hsp60 molecules on Daudi Burkitt’s lymphoma cells. J Immunol 150:2046–2055PubMedGoogle Scholar
  18. 18.
    Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21:315–320CrossRefGoogle Scholar
  19. 19.
    Laad AD, Thomas ML, Fakih AR, Chiplunkar S (1999) Human gamma delta T cells recognize heat shock protein-60 on oral tumor cells. Int J Cancer 80:709–714CrossRefGoogle Scholar
  20. 20.
    Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, Zhao R, Puravs E, Tra J, Michael CD, Misek DE, Hanash SM (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:607–7616Google Scholar
  21. 21.
    Barazi HO, Zhou L, Templeton NS, Krutzsch HC, Roberts DD (2002) Identification of heat shock protein 60 as a molecular mediator of alpha 3 beta 1 integrin activation. Cancer Res 62:1541–1548PubMedGoogle Scholar
  22. 22.
    Xu Q (2003) Infections, heat shock proteins, and atherosclerosis. Curr Opin Cardiol 18:245–252CrossRefGoogle Scholar
  23. 23.
    Lewthwaite J, Owen N, Coates A, Henderson B, Steptoe A (2002) Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress. Circulation 106:196–201CrossRefGoogle Scholar
  24. 24.
    Johnson GB, Brunn GJ, Platt JL (2003) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Crit Rev Immunol 23:15–44CrossRefGoogle Scholar
  25. 25.
    Flohe SB, Bruggemann J, Lendemans S, Nikulina M, Meierhoff G, Flohe S, Kolb H (2003) Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J Immunol 170:2340–2348CrossRefGoogle Scholar
  26. 26.
    Nakamura M, Xavier RM, Tsunematsu T, Tanigawa Y (1995) Molecular cloning and characterization of a cDNA encoding monoclonal nonspecific suppressor factor. Proc Natl Acad Sci USA 92:3463–3467Google Scholar
  27. 27.
    Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5514CrossRefGoogle Scholar
  28. 28.
    Watanabe J, Nakagawa M, Watanabe N, Nakamura M (2013) Ubiquitin-like protein MNSFβ covalently binds to Bcl-G and enhances lipopolysaccharide/interferon γ-induced apoptosis in macrophages. FEBS J 280:1281–1293CrossRefGoogle Scholar
  29. 29.
    Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164:13–17CrossRefGoogle Scholar
  30. 30.
    Chen W, Syldath U, Bellmann K, Burkart V, Kolb H (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162:3212–3219Google Scholar
  31. 31.
    Bethke K, Staib F, Distler M, Schmitt U, Jonuleit H, Enk AH, Galle PR, Heike M (2002) Different efficiency of heat shock proteins (HSP) to activate human monocytes and dendritic cells: superiority of HSP60. J Immunol 169:1641–6148CrossRefGoogle Scholar
  32. 32.
    Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial and human heat shock protein 60 s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103:571–577CrossRefGoogle Scholar
  33. 33.
    Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339CrossRefGoogle Scholar
  34. 34.
    Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561CrossRefGoogle Scholar
  35. 35.
    Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, Morrison SG, Morrison RP, Arditi M (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168:1435–1440CrossRefGoogle Scholar
  36. 36.
    Jin L, Pahuja KB, Wickliffe KE, Gorur A, Baumgärtel C, Schekman R, Rape M (2012) Ubiquitin-dependent regulation of COPII coat size and function. Nature 482:495–500CrossRefGoogle Scholar
  37. 37.
    Cappello F, Conway de Macario E, Marasà L, Zummo G, Macario AJ (2008) Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7:801–809CrossRefGoogle Scholar
  38. 38.
    Kalderon B, Kogan G, Bubis E, Pines O (2015) Cytosolic Hsp60 can modulate proteasome activity in yeast. J Biol Chem 290:3542–3551CrossRefGoogle Scholar
  39. 39.
    Chun JN, Choi B, Lee KW, Lee DJ, Kang DH, Lee JY, Song IS, Kim HI, Lee SH, Kim HS, Lee NK, Lee SY, Lee KJ, Kim J, Kang SW (2010) Cytosolic Hsp60 is involved in the NF-kappaB-dependent survival of cancer cells via IKK regulation. PLoS ONE 5:e9422CrossRefGoogle Scholar
  40. 40.
    Kirchhoff SR, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105:2899–2904CrossRefGoogle Scholar
  41. 41.
    Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson DW (1999) Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J 18:2049–2056CrossRefGoogle Scholar
  42. 42.
    Chahine MN, Deniset J, Dibrov E, Hirono S, Blackwood DP, Austria JA, Pierce GN (2011) Oxidized LDL promotes the mitogenic actions of Chlamydia pneumoniae in vascular smooth muscle cells. Cardiovasc Res 92:476–483CrossRefGoogle Scholar
  43. 43.
    Deniset JF, Hedley TE, Hlaváčková M, Chahine MN, Dibrov E, O’Hara K, Maddaford GG, Nelson D, Maddaford TG, Fandrich R, Kardami E, Pierce GN (2018) Heat shock protein 60 involvement in vascular smooth muscle cell proliferation. Cell Signal 47:44–51CrossRefGoogle Scholar
  44. 44.
    Habich C, Baumgart K, Kolb H, Burkart V (2002) The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 168:569–576CrossRefGoogle Scholar
  45. 45.
    Nakamura M, Ogawa H, Tsunematsu T (1986) Isolation and characterization of a monoclonal nonspecific suppressor factor (MNSF) produced by a T cell hybridoma. J Immunol 136:904–2909Google Scholar
  46. 46.
    Habich C, Kempe K, Burkart V, Van Der Zee R, Lillicrap M, Gaston H, Kolb H (2004) Identification of the heat shock protein 60 epitope involved in receptor binding on macrophages. FEBS Lett 568:65–69CrossRefGoogle Scholar
  47. 47.
    Gu Y, He Y, Zhang X, Shi Y, Yang Q, Yu L, Sun Z, Zhang H, Wang J, Gao X, Wang J (2015) Deficiency of monoclonal non-specific suppressor factor beta (MNSFB) promotes pregnancy loss in mice. Mol Reprod Dev 82:475–488CrossRefGoogle Scholar
  48. 48.
    Berndsen CE, Wolberger C (2014) New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 21:301–307CrossRefGoogle Scholar
  49. 49.
    Sarikas A, Hartmann T, Pan ZQ (2010) The cullin protein family. Genome Biol 12:220CrossRefGoogle Scholar
  50. 50.
    Zimmerman ES, Schulman BA, Zheng N (2010) Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 20:714–721CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Regional Collaborative Medical Research, Office for Regional Collaboration and InnovationShimane UniversityIzumoJapan

Personalised recommendations