Molecular and Cellular Biochemistry

, Volume 452, Issue 1–2, pp 153–166 | Cite as

High-fat diet abolishes the cardioprotective effects of ischemic postconditioning in murine models despite increased thioredoxin-1 levels

  • Tamara Mazo
  • Verónica D´Annunzio
  • Tamara Zaobornyj
  • Virginia Perez
  • Anabella Gomez
  • Gabriela Berg
  • Magali Barchuk
  • Georgina Ossani
  • Manuela Martinefski
  • Valeria Tripodi
  • Néstor Lago
  • Ricardo J. GelpiEmail author


Ischemic postconditioning (PostC) reduces infarct size in healthy experimental models. However, if protective effects of PostC are abolished during early stages of atherosclerotic and if this is related with a disbalance in mitochondrial energetics and alterations in thioredoxin-1 (Trx1) is still unknown. The objectives were to generate a murine high-fat diet (HFD)-fed model that developed in a phenotype consistent with early stages of atherosclerosis to then evaluate whether HFD exposure increased oxidative stress and consequently abolished the cardioprotection conferred by PostC. We used C57/BL6 mice fed with control diet (CD) or HFD for 12 weeks. Isolated mice hearts were subjected to 30 min of ischemia and 120 min of reperfusion (I/R group). For PostC group, after ischemia, six cycles of reperfusion/ischemia were performed (10 s per cycle) at the onset of reperfusion. In CD group, the PostC reduced infarct size (CD-I/R: 52.14 ± 2.8 vs. CD-PostC: 36.58 ± 1.8, P < 0.05) and increased phosphorylation of GSK3β (CD-PostC: 2.341 ± 1.03 vs. CD-Baseline: 0.923 ± 0.41 AUOD, P < 0.05), and this cardioprotection was abolished in HFD-exposed mice. HFD increased hydrogen peroxide levels, produced a shift towards an oxidized intracellular environment (GSSG/GSH2), and increased Trx1 expression with higher fractions of oxidized protein. State 3 mitochondrial oxygen consumption in basal conditions decreased 24% in HFD-exposed mice and PostC improved state 3 values only in CD mice. Cellular redox state and mitochondrial bioenergetics were altered in HFD-exposed mice. We demonstrated that alterations in redox state at early stages of atherosclerosis abolished cardioprotective mechanisms, such as those induced by PostC, even with increased Trx1 levels.


High-fat diet Thioredoxin Ischemic postconditioning Oxidative stress 



This study was supported by the University of Buenos Aires (UBACYT# 20020110100159); and the National Agency for Technological and Scientific Promotion (PICT 0373) and CONICET (PIP 2014/0012).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Alpert MA, Lavie CJ, Agrawal H, Aggarwal KB, Kumar SA (2014) Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management. Transl Res 164(4):345–356. CrossRefGoogle Scholar
  2. 2.
    Cohen MV, Yang XM, Neumann T, Heusch G, Downey JM (2000) Favorable remodeling enhances recovery of regional myocardial function in the weeks after infarction in ischemically preconditioned hearts. Circulation 102(5):579–583CrossRefGoogle Scholar
  3. 3.
    Ciruzzi M, Schargrodsky H, Rozlosnik J, Pramparo P, Delmonte H, Rudich V, Piskorz D, Negri E, Soifer S, La Vecchia C (1997) Frequency of family history of acute myocardial infarction in patients with acute myocardial infarction. Argentine FRICAS (Factores de Riesgo Coronario en America del Sur) Investigators. Am J Cardiol 80(2):122–127CrossRefGoogle Scholar
  4. 4.
    Dawber TR, Meadors GF, Moore FE (1951) Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health Nations Health 41(3):279–281CrossRefGoogle Scholar
  5. 5.
    Andreadou I, Iliodromitis EK, Lazou A, Görbe A, Giricz Z, Schulz R, Ferdinandy P (2017) Effect of hypercholesterolaemia on myocardial function, ischaemia-reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 174(12):1555–1569. CrossRefGoogle Scholar
  6. 6.
    Formiguera X, Cantón A (2004) Obesity: epidemiology and clinical aspects. Best Pract Res Clin Gastroenterol 18(6):1125–1146CrossRefGoogle Scholar
  7. 7.
    Diniz YS, Faine LA, Galhardi CM, Rodrigues HG, Ebaid GX, Burneiko RC, Cicogna AC, Novelli EL (2005) Monosodium glutamate in standard and high-fiber diets: metabolic syndrome and oxidative stress in rats. Nutrition 21(6):749–755CrossRefGoogle Scholar
  8. 8.
    Sack MN, Murphy E (2011) The role of comorbidities in cardioprotection. J Cardiovasc Pharmacol Ther 16(3–4):267–272. CrossRefGoogle Scholar
  9. 9.
    Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66(4):1142–1174. CrossRefGoogle Scholar
  10. 10.
    D´Annunzio V, Donato M, Buchholz B, Pérez V, Miksztowicz V, Berg G, Gelpi RJ (2012) High cholesterol diet effects on ischemia-reperfusion injury of the heart. Mol Cell Biochem 90(9):1185–1196. Google Scholar
  11. 11.
    Donato M, D’Annunzio V, Berg G, Gonzalez G, Schreier L, Morales C, Wikinski RL, Gelpi RJ (2007) Ischemic postconditioning reduces infarct size by activation of A1 receptors and K+ (ATP) channels in both normal and hypercholesterolemic rabbits. J Cardiovasc Pharmacol 49(5):287–292CrossRefGoogle Scholar
  12. 12.
    Ferdinandy P, Szilvássy Z, Horváth LI, Csont T, Csonka C, Nagy E, Szentgyörgyi R, Nagy I, Koltai M, Dux L (1997) Loss of pacing-induced preconditioning in rat hearts: role of nitric oxide and cholesterol-enriched diet. J Mol Cell Cardiol 29(12):3321–3333CrossRefGoogle Scholar
  13. 13.
    Szilvassy Z, Ferdinandy P, Szilvassy J, Nagy I, Karcsu S, Lonovics J, Dux L, Koltai M (1995) The loss of pacing-induced preconditioning in atherosclerotic rabbits: role of hypercholesterolaemia. J Mol Cell Cardiol 27(12):2559–2269CrossRefGoogle Scholar
  14. 14.
    Ueda Y, Kitakaze M, Komamura K, Minamino T, Asanuma H, Sato H, Kuzuya T, Takeda H, Hori M (1999) Pravastatin restored the infarct size-limiting effect of ischemic preconditioning blunted by hypercholesterolemia in the rabbit model of myocardial infarction. J Am Coll Cardiol 34(7):2120–2125CrossRefGoogle Scholar
  15. 15.
    De Wit NJ, Bosch-Vermeulen H, de Groot PJ, Hooiveld GJ, Bromhaar MM, Jansen J, Müller M, van der Meer R (2008) The role of the small intestine in the development of dietary fat-induced obesity and insulinresistance in C57BL/6J mice. BMC Med Genomics 1:14. CrossRefGoogle Scholar
  16. 16.
    Tao L, Gao E, Bryan NS, Qu Y, Liu HR, Hu A, Christopher TA, Lopez BL, Yodoi J, Koch WJ, Feelisch M, Ma XL (2004) Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitsosylation. Proc Natl Acad Sci USA 101(31):11471–11476CrossRefGoogle Scholar
  17. 17.
    Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761CrossRefGoogle Scholar
  18. 18.
    Qin H, Zhang X, Ye F, Zhong L (2014) High-fat diet-induced changes in liver thioredoxin and thioredoxin reductase as a novel feature of insulin resistance. FEBS Open Bio 4:928–935. CrossRefGoogle Scholar
  19. 19.
    Boardman NT, Hafstad AD, Lund J, Rossvoll L, Aasum E (2017) Exercise of obese mice induces cardioprotection and oxygen sparing in hearts exposed to high-fat load. Am J Physiol Heart Circ Physiol 1 313(5):H1054–H1062. CrossRefGoogle Scholar
  20. 20.
    Velázquez-Villegas LA, Tovar AR, López-Barradas AM, Torres N (2013) The dietary protein/carbohydrate ratio differentially modifies lipogenesis and protein synthesis in the mammary gland, liver and adipose tissue during gestation and lactation. PLoS ONE 16(7):e69338. 8) .CrossRefGoogle Scholar
  21. 21.
    Perez V, D Annunzio V, Valdez LB, Zaobornyj T, Bombicino S, Mazo T, Carbajosa NL, Gironacci MM, Boveris A, Sadoshima J, Gelpi RJ (2016) Thioredoxin-1 attenuates ventricular and mitochondrial postischemic dysfunction in the stunned myocardium of transgenic mice. Antioxid Redox Signal 25(2):78–88. CrossRefGoogle Scholar
  22. 22.
    Lucero D, Miksztowicz V, Gualano G, Longo C, Landeira G, Álvarez E, Zago V, Brites F, Berg G, Fassio E, Schreier L (2017) Nonalcoholic fatty liver disease associated with metabolic syndrome: Influence of liver fibrosis stages on characteristics of very low-density lipoproteins. Clin Chim Acta 473:1–8. CrossRefGoogle Scholar
  23. 23.
    D’Annunzio V, Donato M, Sabán M, Sanguinetti SM, Wikinski RL, Gelpi RJ (2005) Hypercholesterolemia attenuates postischemic ventricular dysfunction in the isolated rabbit heart. Mol Cell Biochem 273(1–2):137–143CrossRefGoogle Scholar
  24. 24.
    Boveris A, Costa LE, Cadenas E, Poderoso JJ (1999) Regulation of mitochondrial respiration by adenosine diphosphate, oxygen, and nitric oxide. Methods Enzymol 301:188–198CrossRefGoogle Scholar
  25. 25.
    Squellerio I, Caruso D, Porro B, Veglia F, Tremoli E, Cavalca V (2012) Direct glutathione quantification in human blood by LC- MS/MS: comparison with HPLC with electrochemical detection. J Pharm Biomed Anal 71:111–118. CrossRefGoogle Scholar
  26. 26.
    Bersani NA, Merwin JR, Lopez NI, Pearson GD, Merrill GF (2002) Protein electrophoretic mobility shift assay to monitor redox state of thioredoxin in cells. Methods Enzymol 347:317–326CrossRefGoogle Scholar
  27. 27.
    Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels. Nat Protoc 1(4):1852–1858CrossRefGoogle Scholar
  28. 28.
    Boveris A (1984) Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol 105:429–435CrossRefGoogle Scholar
  29. 29.
    Adluri RS, Thirunavukkarasu M, Zhan L, Akita Y, Samuel SM, Otani H, Ho YS, Maulik G, Maulik N (2010) Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 mice. J Mol Cell Cardiol 50(1):239–247. CrossRefGoogle Scholar
  30. 30.
    Turoczi T, Chang VW, Engelman RM, Maulik N, Ho YS, Das DK (2003) Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1. J Mol Cell Cardiol 35(6):695–704CrossRefGoogle Scholar
  31. 31.
    D´Annunzio V, Perez V, Mazo T, Muñoz MC, Dominici FP, Carreras MC, Poderoso JJ, Sadoshima J, Gelpi RJ (2016) Loss of myocardial protection against myocardial infarction in middle-aged transgenic mice overexpressing cardiac thioredoxin-1. Oncotarget 7(11):11889–11898. CrossRefGoogle Scholar
  32. 32.
    Perez V, D Annunzio V, Mazo T, Marchini T, Caceres L, Evelson P, Gelpi RJ (2016) Ischemic postconditioning confers cardioprotection and prevents reduction of Trx-1 in young mice, but not in middle-aged and old mice. Mol Cell Biochem 415(1–2):67–76. CrossRefGoogle Scholar
  33. 33.
    Perez V, D Annunzio V, Mazo T, Marchini T, Caceres L, Evelson P, Gelpi RJ (2016) Inhibition of endogenous thioredoxin-1 in the heart of transgenic mice does not confer cardioprotection in ischemic postconditioning. Int J Biochem Cell Biol 81(Pt B):315–322. CrossRefGoogle Scholar
  34. 34.
    Iliodromitis EK, Zoga A, Vrettou A, Andreadou I, Paraskevaidis IA, Kaklamanis L, Kremastinos DT (2006) The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis 188(2):356–362CrossRefGoogle Scholar
  35. 35.
    Kupai K, Csonka C, Fekete V, Odendaal L, van Rooyen J, Marais de W, Csont T, Ferdinandy P (2009) Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol 297(5):H1729–H1735. CrossRefGoogle Scholar
  36. 36.
    Shao D, Oka S, Liu T, Zhai P, Ago T, Sciarretta S, Li H, Sadoshima J (2014) A redox-dependent mechanism for regulation of AMPK activation by Thioredoxin1 during energy starvation. Cell Metab 19(2):232–245. CrossRefGoogle Scholar
  37. 37.
    Tetsuro Ago and Junichi Sadoshima (2006) Thioredoxin and Ventricular Remodeling J Mol Cell Cardiol 41(5): 762–773. CrossRefGoogle Scholar
  38. 38.
    Augusti PR, Quatrin A, Somacal S, Conterato GM, Sobieski R, Ruviaro AR, Maurer LH, Duarte MM, Roehrs M, Emanuelli T (2012) Astaxanthin prevents changes in the activities of thioredoxin reductase and paraoxonase in hypercholesterolemic rabbits. J Clin Biochem Nutr 51(1):42–49. CrossRefGoogle Scholar
  39. 39.
    Littlejohns B, Pasdois P, Duggan S, Bond AR, Heesom K, Jackson CL, Angelini GD, Halestrap AP, Suleiman MS (2014) Hearts from mice fed a non-obesogenic high-fat diet exhibit changes in their oxidative state, calcium and mitochondria in parallel with increased susceptibility to reperfusion injury. PLoS ONE 9(6):e100579. CrossRefGoogle Scholar
  40. 40.
    Cortassa S, Sollott SJ, Aon MA (2017) Mitochondrial respiration and ROS emission during β-oxidation in the heart: An experimental-computational study. PLoS Comput Biol 13(6):e1005588. CrossRefGoogle Scholar
  41. 41.
    Vendrov AE, Stevenson MD, Alahari S, Pan H, Wickline SA, Madamanchi NR, Runge MS (2017) Attenuated superoxide dismutase 2 activity induces atherosclerotic plaque instability during aging in hyperlipidemic mice. J Am Heart Assoc. Google Scholar
  42. 42.
    Choi JW, Ohn JH, Jung HS, Park YJ, Jang HC, Chung SS, Park KS (2017) Carnitine induces autophagy and restores high-fat diet-induced mitochondrial dysfunction. Metabolism. Google Scholar
  43. 43.
    Aurich AC, Niemann B, Pan R, Gruenler S, Issa H, Silber RE, Rohrbach S (2013) Age-dependent effects of high fat-diet on murine left ventricles: role of palmitate. Basic Res Cardiol 108(5):369. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tamara Mazo
    • 1
    • 3
  • Verónica D´Annunzio
    • 1
    • 3
  • Tamara Zaobornyj
    • 2
  • Virginia Perez
    • 1
    • 3
  • Anabella Gomez
    • 1
    • 3
  • Gabriela Berg
    • 4
  • Magali Barchuk
    • 4
  • Georgina Ossani
    • 5
  • Manuela Martinefski
    • 6
  • Valeria Tripodi
    • 6
  • Néstor Lago
    • 5
  • Ricardo J. Gelpi
    • 1
    • 3
    Email author
  1. 1.Department of Pathology, Faculty of Medicine, Institute of Cardiovascular PhysiopathologyUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.School of Pharmacy and Biochemistry, Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET)University of Buenos AiresBuenos AiresArgentina
  3. 3.Faculty of Medicine, Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET)University of Buenos AiresBuenos AiresArgentina
  4. 4.Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina
  5. 5.Department of Pathology, Faculty of MedicineUniversity of Buenos Aires, Experimental and Applied Pathology CenterBuenos AiresArgentina
  6. 6.Department of Pharmaceutics Technology, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations