Molecular and Cellular Biochemistry

, Volume 450, Issue 1–2, pp 75–85 | Cite as

Probing seco-steroid inhibition of the hedgehog signaling pathway

  • Evrett N. Thompson
  • Vibhavari Sail
  • Daniel S. Raccuia
  • M. Kyle HaddenEmail author


Calcitriol, vitamin D3 (VD3), and structurally related VD3 analogues are inhibitors of Hh signaling in multiple contexts and are promising anti-cancer agents in Hh-dependent forms of cancer; however, the cellular mechanisms through which these compounds regulate Hh signal transmission are not clearly defined. Previous studies in this area have implicated both Smoothened, a key mediator of Hh signaling, and the vitamin D receptor (VDR) as potential mediators of Hh inhibition for this class of seco-steroids. We have performed a series of in vitro studies to more fully probe the cellular mechanisms that govern seco-steroid-mediated inhibition of Hh signaling. Our results support a role for both the Hh and VDR pathways in this process, as well as the possibility that other, as yet unidentified proteins, are also central to seco-steroid-mediated inhibition of Hh signaling.


Vitamin D3 Calcitriol Hedgehog signaling Mouse embryonic fibroblast TGF-β 



The authors gratefully acknowledge support of this work by the American Cancer Society (RSG-13-131-01), the National Science Foundation (1515808), and the University of Connecticut Research Foundation. The Ptch−/− and Sufu−/− MEFs were a kind gift from Matthew Scott (Stanford University). The VDR−/− MEFs were a kind gift from Jun Sun (University of Illinois College of Medicine). Smo−/− MEFs were a kind gift from Philip Beachy (Stanford University).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest in regard to the information presented in this manuscript.

Supplementary material

11010_2018_3374_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2042 KB)


  1. 1.
    Haussler MR, Whitfield GK, Haussler CA, Hsieh J-C, Thompson PD, Selznick SH, Dominguez CE, Jurutka PW (1998) The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Min Res 13:325–349CrossRefGoogle Scholar
  2. 2.
    Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP (2006) Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol 4:e232CrossRefGoogle Scholar
  3. 3.
    Uhmann A, Niemann H, Lammering B, Henkel C, Heb I, itzki F, Fritsch A, Prüfer N, Rosenberger A, Dullin C, Schraepler A, Reifenberger J, Schweyer S, Pietsch T, Strutz F, Schultz-Schaeffer W, Hahn H (2011) Antitumoral effects of calcitriol in basal cell carcinomas involve inhibition of hedgehog signaling and induction of vitamin D receptor signaling and differentiation. Mol Cancer Ther 10:2179–2188CrossRefGoogle Scholar
  4. 4.
    Briscoe J, Thérond PP (2013) The mechanisms of hedgehog signaling and its roles in development and disease. Nat Rev Mol Cell Biol 14:418–431CrossRefGoogle Scholar
  5. 5.
    Amayke D, Jagani Z, Dorsch M (2013) Unraveling the therapeutic potential of the hedgehog pathway in cancer. Nat Med 19:1410–1422CrossRefGoogle Scholar
  6. 6.
    Tang JY, Xiao TZ, Oda Y, Chang KS, Shpall E, Wu A, So P-L, Hebert J, Bikle D, Epstein EH (2011) Vitamin D3 inhibits hedgehog signaling and proliferation in murine basal cell carcinomas. Cancer Prev Res 4:744–741CrossRefGoogle Scholar
  7. 7.
    Uhmann A, Niemann H, Lammering B, Henkel C, Heb I, Rosenberger A, Dullin C, Schraepler A, Schultz-Schaeffer W, Hahn H, Calcitriol inhibits hedgehog signaling and induces vitamin D receptor signaling and differentiation in the Patched mouse model of embryonal rhabdomyosarcoma, Sarcoma 2012 (2012) 357040Google Scholar
  8. 8.
    DeBerardinis AM, Banerjee U, Hadden MK (2013) Identification of vitamin D3-based hedgehog pathway inhibitors that incorporate an aromatic A-ring isostere, ACS Med. Chem Lett 4:590–595Google Scholar
  9. 9.
    DeBerardinis AM, Madden DJ, Banerjee U, Sail V, Raccuia DS, DeCarlo D, Lemieux SM, Meares A, Hadden MK (2014) Structure-activity relationships for vitamin D-based aromatic A-ring analogues as hedgehog pathway inhibitors. J Med Chem 54:3724–3736CrossRefGoogle Scholar
  10. 10.
    Banerjee U, DeBerardinis AM, Hadden MK (2015) Design, synthesis, and evaluation of hybrid vitamin D3 side chain analogues as hedgehog pathway inhibitors. Bioorg Med Chem 23:548–555CrossRefGoogle Scholar
  11. 11.
    DeBerardinis AM, Raccuia DS, Maschinot CA, Thompson E, Hadden MK (2015) Vitamin D3 analogues that contain modified A- and seco-B-rings as hedgehog pathway inhibitors. Euro J Med Chem 93:156–171CrossRefGoogle Scholar
  12. 12.
    Yauch RL, Dijkgraaf GJP, Alicke B, Januario T, Ahn CP, Holcomb T, Pujara K, Stinson J, Callahan CA, Tang T, Bazan JF, Kan Z, Seshagiri S, Hann CL, Gould SE, Low JA, Rudin CM (2009) F.J. de Savage, smoothened mutation confers resistance to a hedgehog pathway inhibitor in medulloblastoma. Science 326:572–574CrossRefGoogle Scholar
  13. 13.
    Sharpe HJ, Pau G, Dijkgraaf GJ, Basset-Seguin N, Modrusan Z, Januario T, Tsui V, Durham AB, Dlugosz AA, Haverty PM, Bourgon R, Tang JY, Sarin KY, Dirix L, Fisher DC, Rudin CM, Sofen H, Midgen MR, Yauch RL (2015) F.J. de Savage, genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell 27:327–341CrossRefGoogle Scholar
  14. 14.
    Atwood SX, Sarin KY, Whitson RJ, Li JR, Kim G, Rezaee M, Ally MS, Kim J, Yao C, Chang ALS, Oro AE, Tang JY (2015) Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell 27:342–353CrossRefGoogle Scholar
  15. 15.
    Du P, Kibbe WA (2008) S.M. Lin, lumi: a pipeline for processing Ilumina microarray. Bioinformatics 24:1547–1548CrossRefGoogle Scholar
  16. 16.
    Lin SM, Du P, Kibbe WA (2008) Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res 36:e11CrossRefGoogle Scholar
  17. 17.
    Du P, Kibbe WA, Lin SM (2008) nuID: a universal naming schema of oligonucleotides for Illumina, affymetrix, and other microarrays. Biol Dir 2:16CrossRefGoogle Scholar
  18. 18.
    Lauth M, Bergström Å, Toftgård R (2007) Phorbol esters inhibit the hedgehog signaling pathway downstream of suppressor of fused, but upstream of Gli. Oncogene 26:5163–5168CrossRefGoogle Scholar
  19. 19.
    Szeto FJ, Sun J, Kong J, Duan Y, Liao A, Madara JL, Li YC (2007) Involvement of the vitamin D receptor in the regulation of NG-κB activity in fibroblasts. J Steroid Biochem Mol Biol 103:563–566CrossRefGoogle Scholar
  20. 20.
    Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD (2016) PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res 44:D336-D342CrossRefGoogle Scholar
  21. 21.
    Mi H, Muruganujam A, Casagrande JT, Thomes PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566CrossRefGoogle Scholar
  22. 22.
    Javelaud D, Alexavi VI, Dennler S, Mohammad KS, Guise TA, Mauviel A (2011) TGF-β/SMAD/GLI2 signaling axis in cancer progression and metastasis. Cancer Res 71:5606–5610CrossRefGoogle Scholar
  23. 23.
    Akhurst RJ, Hata A (2015) TGF-β/Smad signaling in renal fibrosis. Front Physiol 6:e82Google Scholar
  24. 24.
    Hu L, Lin X, Lu H, Chen B, Bai Y (2015) An overview of hedgehog signaling in fibrosis. Mol Pharmacol 87:174–182CrossRefGoogle Scholar
  25. 25.
    Clark RA, McCoy GA, Folkvord JM, McPherson JM, TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. 170 (1997) 69–80Google Scholar
  26. 26.
    Xiao L, Du Y, Shen Y, He Y, Zhao H, Li Z (2012) TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front Biosci 17:2667–2674CrossRefGoogle Scholar
  27. 27.
    Nakano N, Itoh S, Watanabe Y, Maeyama K, Itoh F, Kato M (2010) Requirement of TCF7L2 for TGF-beta-dependent transcriptional activation of the TMEPAI gene. J Biol Chem 285:38023–38033CrossRefGoogle Scholar
  28. 28.
    Akhurst RJ, Hata A (2010) Targeting the TGF-β signaling pathway in disease. Nat Rev Drug Discov 11:790–811CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesUniversity of ConnecticutStorrsUSA

Personalised recommendations