Skip to main content
Log in

The nuclear localization of MGF receptor in osteoblasts under mechanical stimulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mechano-growth factor (MGF) has emerged as an important mechanosensitive player in bone repair, but understanding of MGF function is hampered by the fact that MGF receptor and the underlying pathways remain unknown. In this study, fluorescein isothiocyanate (FITC)-labeled MGF-Ct24E (FITC-MGF) was used to determine the subcellular localization of MGF receptor in osteoblasts. After the primary osteoblasts were exposed to stretch with the strain at 10 %, and/or loaded with 50 ng/ml exogenous MGF-Ct24E, cells were incubated with the different concentrations of FITC-MGF (0.01, 0.1, and 1 mg/ml) followed by flow cytometry and laser scanning confocal microscope analysis. Our results showed that the fluorescence intensity and cell population internalizing FITC-MGF increased with the concentration of FITC-MGF. And all the cells were labeled with fluorescence at 1 mg/ml. Notably, FITC-MGF had nuclear localization when osteoblasts were exposed to stretch and/or 50 ng/ml MGF-Ct24E added, compared to the evident cytoplasmic localization in the static culture group. The nuclear localization of FITC-MGF in response to mechanical loading was found to associate with high expression of proliferating cell nuclear antigen, suggesting MGF and its receptor could serve as potential messengers that replay information in nuclei to control cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MGF:

Mechano-growth factor

IGF-I:

Insulin-like growth factor-I

FITC:

Fluorescein isothiocyanate

FITC-labeled MGF-Ct24E:

FITC-MGF

FBS:

Fetal bovine serum

HGDMEM:

High Glucose Dulbecco’s-Modified Eagle Medium

PBS:

Phosphate-buffered saline

BSA:

Bovine serum albumin

PFA:

Paraformaldehyde

PCNA:

Proliferating cell nuclear antigen

References

  1. Goldspink G (2005) Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology (Bethesda) 20:232–238

    Article  CAS  Google Scholar 

  2. Dai Z, Wu F, Yeung EW, Li Y (2010) IGF-IEc expression, regulation and biological function in different tissues. Growth Horm IGF Res 20:275–281

    Article  PubMed  CAS  Google Scholar 

  3. Philippou A, Papageorgiou E, Bogdanis G, Halapas A, Sourla A, Maridaki M, Pissimissis N, Koutsilieris M (2009) Expression of IGF-1 isoforms after exercise-induced muscle damage in humans: characterization of the MGF E peptide actions in vitro. In Vivo (Athens, Greece) 23:567–575

    CAS  Google Scholar 

  4. Hameed M, Toft AD, Pedersen BK, Harridge SD, Goldspink G (2008) Effects of eccentric cycling exercise on IGF-I splice variant expression in the muscles of young and elderly people. Scand J Med Sci Sports 18:447–452

    Article  PubMed  CAS  Google Scholar 

  5. Deng M, Zhang B, Wang K, Liu F, Xiao H, Zhao J, Liu P, Li Y, Lin F, Wang Y (2011) Mechano growth factor E peptide promotes osteoblasts proliferation and bone-defect healing in rabbits. Int Orthop 35:1099–1106

    Article  PubMed  Google Scholar 

  6. Zhang B, Xian C, Luo Y, Wang Y (2009) Expression and subcellular localization of mechano-growth factor in osteoblasts under mechanical stretch. Sci China C 52:928–934

    Article  CAS  Google Scholar 

  7. Peng Q, Wang Y, Qiu J, Zhang B, Sun J, Lv Y, Yang L (2011) A novel mechanical loading model for studying the distributions of strain and mechano-growth factor expression. Arch Biochem Biophys 511(1–2):8–13

    Article  PubMed  CAS  Google Scholar 

  8. Zhang B, Wang Y, Yang L, Pan C, Fu Y, Deng M, Li Y (2010) The effects of MGF and E peptide on the differentiation of osteoblasts. Prog Biochem Biophys 37:304–312

    Article  CAS  Google Scholar 

  9. Schonenberger C, Schutz A, Franco-Obregon A, Zenobi-Wong M (2011) Efficient electroporation of peptides into adherent cells: investigation of the role of mechano-growth factor in chondrocyte culture. Biotechnol Lett 33:883–888

    Article  PubMed  Google Scholar 

  10. Stavropoulou A, Halapas A, Sourla A, Philippou A, Papageorgiou E, Papalois A, Koutsilieris M (2009) IGF-1 expression in infarcted myocardium and MGF E peptide actions in rat cardiomyocytes in vitro. Mol Med 15:127–135

    Article  PubMed  CAS  Google Scholar 

  11. Yang SY, Goldspink G (2002) Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett 522:156–160

    Article  PubMed  CAS  Google Scholar 

  12. Dluzniewska J, Sarnowska A, Beresewicz M, Johnson I, Srai SK, Ramesh B, Goldspink G, Gorecki DC, Zablocka B (2005) A strong neuroprotective effect of the autonomous C-terminal peptide of IGF-1 Ec (MGF) in brain ischemia. FASEB J 19:1896–1898

    PubMed  CAS  Google Scholar 

  13. Mills P, Lafreniere JF, Benabdallah BF, El Fahime M, Tremblay JP (2007) A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor. Exp Cell Res 313:527–537

    Article  PubMed  CAS  Google Scholar 

  14. Wu W, Lee WL, Wu YY, Chen D, Liu TJ, Jang A, Sharma PM, Wang PH (2000) Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. J Biol Chem 275:40113–40119

    Article  PubMed  CAS  Google Scholar 

  15. Bertrand FE, Steelman LS, Chappell WH, Abrams SL, Shelton JG, White ER, Ludwig DL, McCubrey JA (2006) Synergy between an IGF-1R antibody and Raf/MEK/ERK and PI3 K/Akt/mTOR pathway inhibitors in suppressing IGF-1R-mediated growth in hematopoietic cells. Leukemia 20:1254–1260

    Article  PubMed  CAS  Google Scholar 

  16. Matheny RW Jr, Nindl BC, Adamo ML (2010) Minireview: mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 151:865–875

    Article  PubMed  CAS  Google Scholar 

  17. Chew SL, Lavender P, Clark AJ, Ross RJ (1995) An alternatively spliced human insulin-like growth factor-I transcript with hepatic tissue expression that diverts away from the mitogenic IBE1 peptide. Endocrinology 136:1939–1944

    Article  PubMed  CAS  Google Scholar 

  18. Robey PG, Termine JD (1985) Human bone cells in vitro. Calcif Tissue Int 37:453–460

    Article  PubMed  CAS  Google Scholar 

  19. Li A, Kaur P (2005) FACS enrichment of human keratinocyte stem cells. Methods Mol Biol 289:87–96

    PubMed  Google Scholar 

  20. Naryzhny SN (2008) Proliferating cell nuclear antigen: a proteomics view. Cell Mol Life Sci 65:3789–3808

    Article  PubMed  CAS  Google Scholar 

  21. Pederson T (1998) Growth factors in the nucleolus? J Cell Biol 143:279–281

    Article  PubMed  CAS  Google Scholar 

  22. Lee CY, Ryan RJ (1972) Luteinizing hormone receptors: specific binding of human luteinizing hormone to homogenates of luteinized rat ovaries. Proc Natl Acad Sci USA 69:3520–3523

    Article  PubMed  CAS  Google Scholar 

  23. Bradley ME, Bond ME, Manini J, Brown Z, Charlton SJ (2009) SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor. Br J Pharmacol 158:328–338

    Article  PubMed  CAS  Google Scholar 

  24. Hill M, Wernig A, Goldspink G (2003) Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat 203:89–99

    Article  PubMed  CAS  Google Scholar 

  25. Kandalla PK, Goldspink G, Butler-Browne G, Mouly V (2011) Mechano Growth Factor E peptide (MGF-E), derived from an isoform of IGF-1, activates human muscle progenitor cells and induces an increase in their fusion potential at different ages. Mech Ageing Dev 132:154–162

    Article  PubMed  CAS  Google Scholar 

  26. Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549:409–418

    Article  PubMed  CAS  Google Scholar 

  27. Aleksic T, Chitnis MM, Perestenko OV, Gao S, Thomas PH, Turner GD, Protheroe AS, Howarth M, Macaulay VM (2011) Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res 70:6412–6419

    Article  Google Scholar 

  28. Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, Bourguignon L, Hung MC (2001) Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3:802–808

    Article  PubMed  CAS  Google Scholar 

  29. Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC (2006) Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem 98:1570–1583

    Article  PubMed  CAS  Google Scholar 

  30. Bodzin AS, Wei Z, Hurtt R, Gu T, Doria C (2012) Gefitinib resistance in HCC Mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation. J Cell Physiol 227(7):2947–2952

    Article  PubMed  CAS  Google Scholar 

  31. Baserga R, Peruzzi F, Reiss K (2003) The IGF-1 receptor in cancer biology. Int J Cancer 107:873–877

    Article  PubMed  CAS  Google Scholar 

  32. Hartog H, Wesseling J, Boezen HM, van der Graaf WT (2007) The insulin-like growth factor 1 receptor in cancer: old focus, new future. Eur J Cancer 43:1895–1904

    Article  PubMed  CAS  Google Scholar 

  33. Santos A, Bakker AD, Willems HM, Bravenboer N, Bronckers AL, Klein-Nulend J (2011) Mechanical loading stimulates BMP7, but not BMP2, production by osteocytes. Calcif Tissue Int 89:318–326

    Article  PubMed  CAS  Google Scholar 

  34. Tang L, Lin Z, Li YM (2006) Effects of different magnitudes of mechanical strain on Osteoblasts in vitro. Biochem Biophys Res Commun 344:122–128

    Article  PubMed  CAS  Google Scholar 

  35. Myers KA, Rattner JB, Shrive NG, Hart DA (2007) Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity. Biochem Biophys Res Commun 364:214–219

    Article  PubMed  CAS  Google Scholar 

  36. Haudenschild DR, Chen J, Pang N, Lotz MK, D’Lima DD (2011) Rho kinase-dependent activation of SOX9 in chondrocytes. Arthritis Rheum 62:191–200

    Article  Google Scholar 

  37. Li P Jr, Ma YC Jr, Shen HL Sr, Han H Jr, Wang J Sr, Cheng HJ Jr, Wang CF Sr, Xia YY Sr (2011) Cytoskeletal reorganization mediates fluid shear stress-induced ERK5 activation in osteoblastic cells. Cell Biol Int 36(3):229–236

    Article  Google Scholar 

  38. Whitehead J, Vignjevic D, Futterer C, Beaurepaire E, Robine S, Farge E (2008) Mechanical factors activate beta-catenin-dependent oncogene expression in APC mouse colon. HFSP J 2:286–294

    Article  PubMed  CAS  Google Scholar 

  39. Kanazawa T, Furumatsu T, Hachioji M, Oohashi T, Ninomiya Y, Ozaki T (2012) Mechanical stretch enhances COL2A1 expression on chromatin by inducing SOX9 nuclear translocalization in inner meniscus cells. J Orthop Res 30(3):468–474

    Article  PubMed  CAS  Google Scholar 

  40. Takeda K, Tonthat NK, Glover T, Xu W, Koonin EV, Yanagida M, Schumacher MA (2011) Implications for proteasome nuclear localization revealed by the structure of the nuclear proteasome tether protein Cut8. Proc Natl Acad Sci USA 108:16950–16955

    Article  PubMed  CAS  Google Scholar 

  41. Dupin I, Etienne-Manneville S (2011) Nuclear positioning: mechanisms and functions. Int J Biochem Cell Biol 43(12):1698–1707

    Article  PubMed  CAS  Google Scholar 

  42. Nalaskowski MM, Metzner A, Brehm MA, Labiadh S, Brauer H, Grabinski N, Mayr GW, Jucker M (2012) The inositol 5-phosphatase SHIP1 is a nucleo-cytoplasmic shuttling protein and enzymatically active in cell nuclei. Cell Signal 24(3):621–628

    Article  PubMed  CAS  Google Scholar 

  43. Zhao SL, Hong J, Xie ZQ, Tang JT, Su WY, Du W, Chen YX, Lu R, Sun DF, Fang JY (2011) TRAPPC4-ERK2 interaction activates ERK1/2, modulates its nuclear localization and regulates proliferation and apoptosis of colorectal cancer cells. PLoS One 6:e23262

    Article  PubMed  CAS  Google Scholar 

  44. Provenzano MJ, Minner SA, Zander K, Clark JJ, Kane CJ, Green SH, Hansen MR (2011) p75(NTR) expression and nuclear localization of p75(NTR) intracellular domain in spiral ganglion Schwann cells following deafness correlate with cell proliferation. Mol Cell Neurosci 47:306–315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the National Natural Science Foundation of China (11032012, 30870609), Natural Science Foundation of CQ CSTC (2009BB4025), Science and Technology Program of CQ CSTC (2009AB5174) and Foundation of Chongqing Municipal Education Commission (KJ091415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanliang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Q., Qiu, J., Sun, J. et al. The nuclear localization of MGF receptor in osteoblasts under mechanical stimulation. Mol Cell Biochem 369, 147–156 (2012). https://doi.org/10.1007/s11010-012-1377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1377-9

Keywords

Navigation