Skip to main content
Log in

Phe27Cys polymorphism of the human delta opioid receptor predisposes cells to compromised calcium signaling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A quarter of the human population with European background carries at least one allele of the OPRD1 gene that encodes the delta opioid receptor with cysteine at the amino acid position 27 (hδORCys27) instead of the evolutionary conserved phenylalanine (hδORPhe27). The two variants have indistinguishable pharmacological properties but, importantly, hδORCys27 differs from hδORPhe27 in having low maturation efficiency, lower stability at the cell surface and pronounced intracellular location. Both variants were previously shown to interact with the Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) 2b in the early phase of their biosynthesis. We analyzed by pulse-chase assays, whether cellular signaling can affect hδORCys27 maturation. Neither activation of the receptor by a δOR-specific agonist Leu-enkephalin, induction of intracellular calcium (Ca2+) release by ATP nor the direct stimulation of SERCA 2b by protein kinase C activation affected receptor maturation in HEK-293 cells. No signaling-mediated regulation of receptor maturation could therefore be demonstrated. Instead, we found by using single cell Ca2+ measurements that over-expression of hδORCys27, but not hδORPhe27, compromised ATP-induced intracellular Ca2+-signaling. Furthermore, hδORCys27 precursors showed slower dissociation from SERCA2b and hδORCys27 expression caused down-regulation of the homocysteine-inducible endoplasmic reticulum-resident ubiquitin domain-like member 1 protein (HERP). We suggest that aging individuals with at least one hδORCys27 encoding allele might have lowered threshold for Ca2+ dysregulation in neurons expressing hδOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    Article  PubMed  CAS  Google Scholar 

  2. Ni Y, Zhao X, Bao G, Zou L, Teng L, Wang Z, Song M, Xiong J, Bai Y, Pei G (2006) Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nat Med 12:1390–1396

    Article  PubMed  CAS  Google Scholar 

  3. Teng L, Zhao J, Wang F, Ma L, Pei G (2010) A GPCR/secretase complex regulates beta- and gamma-secretase specificity for Abeta production and contributes to AD pathogenesis. Cell Res 20:138–153

    Article  PubMed  CAS  Google Scholar 

  4. Gelernter J, Kranzler HR (2000) Variant detection at the delta opioid receptor (OPRD1) locus and population genetics of a novel variant affecting protein sequence. Hum Genet 107:86–88

    Article  PubMed  CAS  Google Scholar 

  5. Leskelä TT, Markkanen PM, Alahuhta IA, Tuusa JT, Petäjä-Repo UE (2009) Phe27Cys polymorphism alters the maturation and subcellular localization of the human delta opioid receptor. Traffic 10:116–129

    Article  PubMed  Google Scholar 

  6. Petäjä-Repo UE, Hogue M, Bhalla S, Laperriere A, Morello JP, Bouvier M (2002) Ligands act as pharmacological chaperones and increase the efficiency of delta opioid receptor maturation. EMBO J 21:1628–1637

    Article  PubMed  Google Scholar 

  7. Tuusa JT, Markkanen PM, Apaja PM, Hakalahti AE, Petäjä-Repo UE (2007) The endoplasmic reticulum Ca2+-pump SERCA2b interacts with G protein-coupled receptors and enhances their expression at the cell surface. J Mol Biol 371:622–638

    Article  PubMed  CAS  Google Scholar 

  8. Tuusa JT, Leskelä TT, Petäjä-Repo UE (2010) Human delta opioid receptor biogenesis is regulated via interactions with SERCA2b and calnexin. FEBS J 277:2815–2829

    Article  PubMed  CAS  Google Scholar 

  9. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    Article  PubMed  CAS  Google Scholar 

  10. Muallem S, Beeker TG, Fimmel CJ (1987) Activation of the endoplasmic reticulum Ca2 + pump of pancreatic acini by Ca2+ mobilizing hormones. Biochem Biophys Res Commun 149:213–220

    Article  PubMed  CAS  Google Scholar 

  11. Ulianich L, Elia MG, Treglia AS, Muscella A, Di Jeso B, Storelli C, Marsigliante S (2006) The sarcoplasmic-endoplasmic reticulum Ca2+ ATPase 2b regulates the Ca2+ transients elicited by P2Y2 activation in PC Cl3 thyroid cells. J Endocrinol 190:641–649

    Article  PubMed  CAS  Google Scholar 

  12. Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430

    Article  PubMed  CAS  Google Scholar 

  13. Leskelä TT, Markkanen PM, Pietilä EM, Tuusa JT, Petäjä-Repo UE (2007) Opioid receptor pharmacological chaperones act by binding and stabilizing newly synthesized receptors in the endoplasmic reticulum. J Biol Chem 282:23171–23183

    Article  PubMed  Google Scholar 

  14. Yano K, Petersen OH, Tepikin AV (2004) Dual sensitivity of sarcoplasmic/endoplasmic Ca2+-ATPase to cytosolic and endoplasmic reticulum Ca2+ as a mechanism of modulating cytosolic Ca2+ oscillations. Biochem J 383:353–360

    Article  PubMed  CAS  Google Scholar 

  15. Kelly E, Bailey CP, Henderson G (2008) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153(Suppl 1):S379–S388

    PubMed  CAS  Google Scholar 

  16. Ma MC, Qian H, Ghassemi F, Zhao P, Xia Y (2005) Oxygen-sensitive {delta}-opioid receptor-regulated survival and death signals: novel insights into neuronal preconditioning and protection. J Biol Chem 280:16208–16218

    Article  PubMed  CAS  Google Scholar 

  17. Canals M, Jenkins L, Kellett E, Milligan G (2006) Up-regulation of the angiotensin II type 1 receptor by the MAS proto-oncogene is due to constitutive activation of Gq/G11 by MAS. J Biol Chem 281:16757–16767

    Article  PubMed  CAS  Google Scholar 

  18. Usachev YM, Marsh AJ, Johanns TM, Lemke MM, Thayer SA (2006) Activation of protein kinase C in sensory neurons accelerates Ca2+ uptake into the endoplasmic reticulum. J Neurosci 26:311–318

    Article  PubMed  CAS  Google Scholar 

  19. Roderick HL, Lechleiter JD, Camacho P (2000) Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b. J Cell Biol 149:1235–1248

    Article  PubMed  CAS  Google Scholar 

  20. Chen BC, Lin WW (1999) PKCbetaI mediates the inhibition of P2Y receptor-induced inositol phosphate formation in endothelial cells. Br J Pharmacol 127:1908–1914

    Article  PubMed  CAS  Google Scholar 

  21. Ma Y, Hendershot LM (2004) Herp is dually regulated by both the endoplasmic reticulum stress-specific branch of the unfolded protein response and a branch that is shared with other cellular stress pathways. J Biol Chem 279:13792–13799

    Article  PubMed  CAS  Google Scholar 

  22. Chan SL, Fu W, Zhang P, Cheng A, Lee J, Kokame K, Mattson MP (2004) Herp stabilizes neuronal Ca2+ homeostasis and mitochondrial function during endoplasmic reticulum stress. J Biol Chem 279:28733–28743

    Article  PubMed  CAS  Google Scholar 

  23. Simonin F, Befort K, Gaveriaux-Ruff C, Matthes H, Nappey V, Lannes B, Micheletti G, Kieffer B (1994) The human delta-opioid receptor: genomic organization, cDNA cloning, functional expression, and distribution in human brain. Mol Pharmacol 46:1015–1021

    PubMed  CAS  Google Scholar 

  24. Pietilä EM, Tuusa JT, Apaja PM, Aatsinki JT, Hakalahti AE, Rajaniemi HJ, Petäjä-Repo UE (2005) Inefficient maturation of the rat luteinizing hormone receptor. A putative way to regulate receptor numbers at the cell surface. J Biol Chem 280:26622–26629

    Article  PubMed  Google Scholar 

  25. Conn PM, Janovick JA, Brothers SP, Knollman PE (2006) ‘Effective inefficiency’: cellular control of protein trafficking as a mechanism of post-translational regulation. J Endocrinol 190:13–16

    Article  PubMed  CAS  Google Scholar 

  26. Schulze A, Standera S, Buerger E, Kikkert M, van Voorden S, Wiertz E, Koning F, Kloetzel PM, Seeger M (2005) The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J Mol Biol 354:1021–1027

    Article  PubMed  CAS  Google Scholar 

  27. Green KN, LaFerla FM (2008) Linking calcium to Abeta and Alzheimer’s disease. Neuron 59:190–194

    Article  PubMed  CAS  Google Scholar 

  28. Guerrero-Hernandez A, Dagnino-Acosta A, Verkhratsky A (2010) An intelligent sarco-endoplasmic reticulum Ca(2 +) store: Release and leak channels have differential access to a concealed Ca(2 +) pool. Cell Calcium 48:143–149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Tarja Leskelä for cloning of the HA-hδORCys27–pcDNA3 plasmid construct. This study was supported by grants from the Academy of Finland (#127199) and the Sigrid Juselius Foundation (UEP-R). The Finnish Cultural foundation is acknowledged for the grant to J.T.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi T. Tuusa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 366 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuusa, J.T., Petäjä-Repo, U.E. Phe27Cys polymorphism of the human delta opioid receptor predisposes cells to compromised calcium signaling. Mol Cell Biochem 351, 173–181 (2011). https://doi.org/10.1007/s11010-011-0725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0725-5

Keywords

Navigation