Advertisement

Asymptotics and Approximations of Ruin Probabilities for Multivariate Risk Processes in a Markovian Environment

  • G. A. DelsingEmail author
  • M. R. H. Mandjes
  • P. J. C. Spreij
  • E. M. M. Winands
Open Access
Article
  • 20 Downloads

Abstract

This paper develops asymptotics and approximations for ruin probabilities in a multivariate risk setting. We consider a model in which the individual reserve processes are driven by a common Markovian environmental process. We subsequently consider a regime in which the claim arrival intensity and transition rates of the environmental process are jointly sped up, and one in which there is (with overwhelming probability) maximally one transition of the environmental process in the time interval considered. The approximations are extensively tested in a series of numerical experiments.

Keywords

Ruin probability Insurance risk Markov processes Approximations Multi-dimensional risk process 

Mathematics Subject Classification (2010)

91B30 

Notes

References

  1. Aldous D, Hennequin P, Ibragimov I, Jacod J (1985) Ecole d’été de probabilités de Saint-Flour XIII 1983. Lecture notes in mathematics. SpringerGoogle Scholar
  2. Anderson D, Blom J, Mandjes M, Thorsdottir H, de Turck K (2016) A functional central limit theorem for a Markov-modulated infinite-server queue. Methodol Comput Appl Probab 18:153–168MathSciNetCrossRefGoogle Scholar
  3. Asmussen S (1984) Approximations for the probability of ruin within finite time. Scand Actuar J 1984:31–57MathSciNetCrossRefGoogle Scholar
  4. Asmussen S (1987) The heavy traffic limit of a class of Markovian queueing models. Oper Res Lett 6:301–306MathSciNetCrossRefGoogle Scholar
  5. Asmussen S (1989) Risk theory in a Markovian environment. Scand Actuar J 1989:69–100MathSciNetCrossRefGoogle Scholar
  6. Asmussen S (2003) Applied probability and queues. SpringerGoogle Scholar
  7. Asmussen S, Albrecher H (2010) Ruin probabilities, vol 14. World ScientificGoogle Scholar
  8. Avram F, Palmowski Z, Pistorius M (2008) A two-dimensional ruin problem on the positive quadrant. Insur Math Econ 42(1):227–234MathSciNetCrossRefGoogle Scholar
  9. Badescu A, Chueng E (2011) A two-dimensional risk model with proportional reinsurance. J Appl Probab 48(3):749–765MathSciNetCrossRefGoogle Scholar
  10. Billingsley P (1999) Convergence of probability measures. WileyGoogle Scholar
  11. Bäuerle N (1996) Some results about the expected ruin time in Markov-modulated risk models. Insur: Math Econ 18(2):119–127MathSciNetzbMATHGoogle Scholar
  12. Bäuerle N, Kötter M (2007) Markov-modulated diffusion risk models. Scand Actuar J 2007(1):34–52MathSciNetCrossRefGoogle Scholar
  13. Cai J, Li H (2007) Dependence properties and bounds for ruin probabilities in multivariate compound risk models. J Multivar Anal 98:757–773MathSciNetCrossRefGoogle Scholar
  14. Cai J, Landriault D, Shi T, Wei W (2017) Joint insolvency analysis of a shared map risk process: a capital allocation application. North Am Actuar J 21 (2):178–192MathSciNetCrossRefGoogle Scholar
  15. Chen C, Panjer H (2009) A bridge from ruin theory to credit risk. Rev Quant Finan Acc 32(4):373–403CrossRefGoogle Scholar
  16. D’Amico G (2014) Moments analysis of a Markov-modulated risk model with stochastic interest rates. Commun Stoch Anal 8(2):227–246MathSciNetGoogle Scholar
  17. Davidson J (1994) Stochastic limit theory: an introduction for econometricians. Advanced texts in econometrics. Oxford University PressGoogle Scholar
  18. Dickson D, Qazvini M (2018) Ruin problems in Markov-modulated risk models. Ann. Actuar Sci 12:23–48CrossRefGoogle Scholar
  19. Escobar M, Hernandez J (2014) A note on the distribution of multivariate Brownian extrema. Int J Stoch Anal 2014:1–6MathSciNetCrossRefGoogle Scholar
  20. Gong L, Badescu A, Cheung E (2012) Recursive methods for a multi-dimensional risk process with common shocks. Insur: Math Econ 50(1):109–120MathSciNetzbMATHGoogle Scholar
  21. Grandell J (1977) A class of approximations or ruin probabilities. Scand Actuar J 1977:37–52MathSciNetCrossRefGoogle Scholar
  22. He H, Keirstead W, Rebholz J (1998) Double lookbacks. Math Financ 8:201–228MathSciNetCrossRefGoogle Scholar
  23. Iyengar S (1985) Hitting lines with two-dimensional Brownian motion. SIAM J Appl Math 45:983–989MathSciNetCrossRefGoogle Scholar
  24. Jacod J, Shiryaev A (2002) Limit theorems for stochastic processes. Grundlehren der mathematischen Wissenschaften. SpringerGoogle Scholar
  25. Joshi M (2003) The concepts and practice of mathematical finance mathematics, finance and risk. Cambridge University PressGoogle Scholar
  26. Kaishev V, Dimitrova D, Ignatov Z (2008) Operational risk and insurance: a ruin-probabilistic reserving approach. J Oper Risk 3(3):39–60CrossRefGoogle Scholar
  27. Kallenberg O (1997) Foundations of modern probability. SpringerGoogle Scholar
  28. Kosorok M (2008) Introduction to empirical processes and semiparametric inference. SpringerGoogle Scholar
  29. Kou S, Zhong H (2016) First-passage times of two-dimensional Brownian motion. Adv Appl Probab 48(4):1045–1060MathSciNetCrossRefGoogle Scholar
  30. Loisel S (2007) Time to ruin, insolvency penalties and dividends in a Markov-modulated multi-risk model with common shocks. Bulletin Français d’Actuariat 7:4–24Google Scholar
  31. Lu Y, Tsai C (2007) The expected discounted penalty at ruin for a Markov-modulated risk process perturbed by diffusion. North Am Actuar J 11(2):136–149MathSciNetCrossRefGoogle Scholar
  32. Lundberg F (1903) Approximerad framställning af sannolikhetsfunktionen: Återförsäkering af kollektivrisker. Almqvist & WiksellGoogle Scholar
  33. Pang G, Zheng Y (2017) On the functional and local limit theorems for Markov modulated compound Poisson processes. Stat Probab Lett 129:131–140MathSciNetCrossRefGoogle Scholar
  34. Picard P, Lefévre C, Coulibaly I (2003) Multirisks model and finite-time ruin probabilities. Methodol Comput Appl Probab 5:337–353MathSciNetCrossRefGoogle Scholar
  35. Reinhard J (1984) On a class of semi-Markov risk models obtained as a classical risk models in a Markovian environment. ASTIN Bulletin 14:23–43CrossRefGoogle Scholar
  36. Whitt W (2007) Proofs of the martingale FCLT. Probab Surveys 4:268–302MathSciNetCrossRefGoogle Scholar
  37. Wise M, Bhansali V (2008) Correlated random walks and the joint survival probability. SSRN Electronic JournalGoogle Scholar
  38. Zhang X (2008) On the ruin problem in a Markov-modulated risk model. Methodol Comput Appl Probab 10(2):225–238MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Korteweg-de Vries InstituteUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.RabobankUtrechtThe Netherlands
  3. 3.CWIAmsterdamThe Netherlands
  4. 4.Radboud UniversityNijmegenThe Netherlands

Personalised recommendations