Advertisement

A Bayesian Cure Rate Model Based on the Power Piecewise Exponential Distribution

  • Mário de CastroEmail author
  • Yolanda M. Gómez
Article
  • 15 Downloads

Abstract

Cure rate models have been used in a number of fields. These models are applied to analyze survival data when the population has a proportion of subjects insusceptible to the event of interest. In this paper, we propose a new cure rate survival model formulated under a competing risks setup. The number of competing causes follows the negative binomial distribution, while for the latent times we posit the power piecewise exponential distribution. Samples from the posterior distribution are drawn through MCMC methods. Some properties of the estimators are assessed in a simulation study. A dataset on cutaneous melanoma is analyzed using the proposed model as well as some existing models for the sake of comparison.

Keywords

Negative binomial distribution MCMC methods Semi-parametric model Survival analysis 

Mathematics Subject Classification (2010)

MSC 62N02 62P10 62N05 62G07 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank two reviewers for their comments, which helped us to improve our paper. The work of the first author is partially supported by CNPq, Brazil. Research carried out using the computational resources of the Center for Mathematical Sciences Applied to Industry (CeMEAI) funded by FAPESP, Brazil (grant 2013/07375-0).

References

  1. Aitkin M, Laird N, Francis B (1983) A reanalysis of the stanford heart transplant data. J Amer Stat Assoc 78:264–292CrossRefGoogle Scholar
  2. Balakrishnan N, Koutras MV, Milienos FS, Pal S (2016) Piecewise linear approximations for cure rate models and associated inferential issues. Methodol Comput Appl Probab 18:937–966MathSciNetCrossRefzbMATHGoogle Scholar
  3. Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47:501–515CrossRefGoogle Scholar
  4. Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc B 11:15–53zbMATHGoogle Scholar
  5. Breslow NE (1974) Covariance analysis of censored survival data. Biometrics 30:89–99CrossRefGoogle Scholar
  6. Cancho VG, Rodrigues J, de Castro M (2011) A flexible model for survival data with a cure rate: a Bayesian approach. J Appl Stat 38:57–70MathSciNetCrossRefGoogle Scholar
  7. Cancho VG, Louzada F, Ortega EM (2013) The power series cure rate model: An application to a cutaneous melanoma data. Commun Stat Simul Comput 42:586–602MathSciNetCrossRefzbMATHGoogle Scholar
  8. Chen MH, Ibrahim JG, Sinha D (1999) A new Bayesian model for survival data with a surviving fraction. J Am Stat Assoc 94:909–919MathSciNetCrossRefzbMATHGoogle Scholar
  9. Clark DE, Ryan LM (2002) Concurrent prediction of hospital mortality and length of stay from risk factors on admission. Health Serv Res 37:631–645CrossRefGoogle Scholar
  10. Conlon ASC, Taylor JMG, Sargent DJ (2014) Multi-state models for colon cancer recurrence and death with a cured fraction. Stat Med 33:1750–1766MathSciNetCrossRefGoogle Scholar
  11. de Castro M, Cancho VG, Rodrigues J (2009) A Bayesian long-term survival model parametrized in the cured fraction. Biom J 51:443–455MathSciNetCrossRefGoogle Scholar
  12. Demarqui FN, Loschi RH, Dey DK, Colosimo EA (2012) A class of dynamic piecewise exponential models with random time grid. J Stat Plann Inference 42:728–742MathSciNetCrossRefzbMATHGoogle Scholar
  13. Gallardo DI, Gómez HW, Bolfarine H (2017a) A new cure rate model based on the Yule-Simon distribution with application to a melanoma data set. J Appl Stat 44:1153–1164MathSciNetCrossRefGoogle Scholar
  14. Gallardo DI, Gómez YM, Arnold BC, Gómez HW (2017b) The Pareto IV power series cure rate model with applications. SORT - Stat Oper Res Trans 41:297–318MathSciNetzbMATHGoogle Scholar
  15. Gallardo DI, Gómez YM, de Castro M (2018) A flexible cure rate model based on the polylogarithm distribution. J Stat Comput Simul 88:2137–2149MathSciNetCrossRefGoogle Scholar
  16. Gamernan D (1991) Dynamic Bayesian models for survival data. Appl Stat 40:63–79CrossRefGoogle Scholar
  17. Geisser S, Eddy WF (1979) A predictive approach to model selection. J Am Stat Assoc 74:153–160MathSciNetCrossRefzbMATHGoogle Scholar
  18. Gelfand AE, Dey DK (1994) Bayesian model choice: asymptotics and exact calculations. J R Stat Soc B 56:501–514MathSciNetzbMATHGoogle Scholar
  19. Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511CrossRefzbMATHGoogle Scholar
  20. Gómez YM, Gallardo DI, Arnold BC (2018) The power piecewise exponential model. J Stat Comput Simul 88:825–840MathSciNetCrossRefGoogle Scholar
  21. Gupta RD, Kundu D (2001) Exponentiated exponential family: An alternative to gamma and Weibull distributions. Biom J 43:117–130MathSciNetCrossRefzbMATHGoogle Scholar
  22. Hardy GH, Littlewood JE, Pólya G (1952) Inequalities, 2 edn. CambridgeGoogle Scholar
  23. Hashimoto EM, Ortega EMM, Cordeiro GM, Cancho VG (2014) The Poisson Birnbaum-Saunders model with long-term survivors. Statistics 48:1394–1413MathSciNetCrossRefzbMATHGoogle Scholar
  24. Ibrahim JG, Chen MH, Sinha D (2001) Bayesian survival analysis. Springer, New YorkCrossRefzbMATHGoogle Scholar
  25. Kim S, Chen MH, Dey DK, Gamerman D (2006) Bayesian dynamic models for survival data with a cure fraction. Lifetime Data Anal 13:17–35MathSciNetCrossRefzbMATHGoogle Scholar
  26. Klein JP, van Houwelingen HC, Ibrahim JG, Scheike TH (eds) (2014) Handbook of survival analysis. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  27. Madi MT, Raqab MZ (2009) Bayesian inference for the generalized exponential distribution based on progressively censored data. Commun Stat Theory Methods 38:2016–2029MathSciNetCrossRefzbMATHGoogle Scholar
  28. Maller RA, Zhou X (1996) Survival analysis with Long-Term survivors. Wiley, New YorkzbMATHGoogle Scholar
  29. McKeague IW, Tighiouart M (2000) Bayesian estimators for conditional hazard functions. Biometrics 56:1007–1015MathSciNetCrossRefzbMATHGoogle Scholar
  30. Peng Y, Taylor JMG (2014) Cure models. In: Klein JP, van Houwelingen HC, Ibrahim JG, Scheike TH (eds) Handbook of survival analysis. Chapman & Hall/CRC, Boca Raton, pp 113–134Google Scholar
  31. Piegorsch WW (1990) Maximum likelihood estimation for the negative binomial dispersion parameter. Biometrics 46:863–867MathSciNetCrossRefGoogle Scholar
  32. Plummer M (2017) JAGS Version 4.3.0 user manual. http://mcmc-jags.sourceforge.net
  33. R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org
  34. Robert CP, Casella G (2004) Monte carlo statistical methods, 2nd edn. Springer, New YorkCrossRefzbMATHGoogle Scholar
  35. Rodrigues J, Cancho VG, de Castro M, Louzada-Neto F (2009) On the unification of long-term survival models. Stat Probab Lett 79:753–759MathSciNetCrossRefzbMATHGoogle Scholar
  36. Ross GJS, Preece DA (1985) The negative binomial distribution. Stat 34:323–336Google Scholar
  37. Saha K, Paul S (2005) Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics 61:179–185MathSciNetCrossRefzbMATHGoogle Scholar
  38. Sahu SK, Dey DK, Aslanidu H, Sinha D (1997) A Weibull regression model with gamma frailties for multivariate survival data. Lifetime Data Anal 3:123–137CrossRefzbMATHGoogle Scholar
  39. Sinha D, Chen MH, Gosh SK (1999) Bayesian analysis and model selection for interval-censored survival data. Biometrics 55:585–590MathSciNetCrossRefzbMATHGoogle Scholar
  40. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B 64:583–639MathSciNetCrossRefzbMATHGoogle Scholar
  41. Su Y, Yajima M (2015) R2jags. R package version 0.5-7. Vienna, Austria: The Comprehensive R Archive Network. https://cran.r-project.org/package=R2jags
  42. Tsodikov AD, Ibrahim JG, Yakovlev AY (2003) Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98:1063–1078MathSciNetCrossRefGoogle Scholar
  43. Yakovlev AY, Tsodikov AD (1996) Stochastic models of tumor latency and their biostatistical applications. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  44. Yin G, Ibrahim JG (2005) Cure rate models: a unified approach. Can J Stat 33:559–570MathSciNetCrossRefzbMATHGoogle Scholar
  45. Zhao X, Zhou X (2008) Discrete0time survival models with long-term survivors. Stat Med 27:1261–1281MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  2. 2.Departamento de Matemática, Facultad de IngenieríaUniversidad de AtacamaCopiapóChile

Personalised recommendations