Advertisement

SIR-Type Epidemic Models as Block-Structured Markov Processes

  • Claude LefèvreEmail author
  • Matthieu Simon
Article
  • 7 Downloads

Abstract

This paper proposes a block-structured Markov process to describe the spread of epidemics of Susceptible-Infected-Removed (SIR) type. Our purpose is to determine the distribution of the final state of the process and of some other interesting measures of the dimension of the epidemic. The followed modeling approach proves to be simple and systematic. Its flexibility is underlined by the presentation of several specific models that extend the classical general epidemic. Finally, two numerical examples illustrate some of the results obtained.

Keywords

SIR epidemic models Block-structured Markov processes Matrix-analytic methods 

Mathematics Subject Classification (2010)

60J28 60K10 60K37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the referees for useful comments and suggestions. M. Simon acknowledges the support of the Australian Research Council Center of Excellence for Mathematical and Statistical Frontiers (ACEMS).

References

  1. Ackleh AS, Allen LJS (2005) Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discret Contin Dyn Syst, Ser B 5:175–188MathSciNetCrossRefGoogle Scholar
  2. Albrecher H, Thonhauser S (2012) On optimal dividend strategies with a random time horizon. In: Cohen SN, Madan D, Siu TK, Yang H (eds) Stochastic processes, finance and control. A festschrift in honor of Robert Elliott. Advances in statistics, probability and actuarial science, vol 1. World Scientific, Singapore, pp 157–180Google Scholar
  3. Artalejo JR, Economou A, Lopez-Herrero MJ (2013) Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size. J Math Biol 67:799–831MathSciNetCrossRefGoogle Scholar
  4. Asmussen S, Avram F, Usabel M (2002) Erlangian approximations for finite-horizon ruin probabilities. ASTIN Bullet 32:267–281MathSciNetCrossRefGoogle Scholar
  5. Bacaër N (2016) Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire. J Math Biol 73:847–866MathSciNetCrossRefGoogle Scholar
  6. Ball F, O’Neill P (1993) A modification of the general stochastic epidemic motivated by AIDS modelling. Adv Appl Probab 25:39–62MathSciNetCrossRefGoogle Scholar
  7. Ball F, O’Neill P (1994) Strong convergence of stochastic epidemics. Adv Appl Probab 265:629–655MathSciNetCrossRefGoogle Scholar
  8. Ball F (2018) Susceptibility sets and the final outcome of collective Reed-Frost epidemics Methodol Comput Appl Probab, to appearGoogle Scholar
  9. Billard L, Zhao Z (1993) The stochastic general epidemic model revisited and a generalization. IMA J Math Appl Med Biol 10:67–75MathSciNetCrossRefGoogle Scholar
  10. Daley DJ, Gani J (1999) Epidemic modelling: an introduction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. Daniels HE (1990) The time of occurrence of the maximum of a closed epidemic. In: Gabriel J-P, Lefèvre C, Picard P (eds) Stochastic processes in epidemic theory. Proceedings, Luminy 1988. Lecture notes in biomathematics 86. Springer, Berlin, pp 129–136Google Scholar
  12. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, New YorkGoogle Scholar
  13. Dietz K (1979) Epidemiological interference of virus populations. J Math Biol 8:291–300MathSciNetCrossRefGoogle Scholar
  14. Ed-Darraz A, Khaladi M (2015) On the final epidemic size in random environment. Math Biosci 266:10–14MathSciNetCrossRefGoogle Scholar
  15. El Maroufy H, Omari L, Taib Z (2012) Transition probabilities for generalized SIR epidemic model. Stoch Model 28:15–28MathSciNetCrossRefGoogle Scholar
  16. El Maroufy H, Driss K, Taib Z (2016) Final outcome probabilities for SIR epidemic model. Commun Stat - Theory Methods 45:2426–2437MathSciNetCrossRefGoogle Scholar
  17. Feng R, Garrido J (2011) Actuarial applications of epidemiological models. North Amer Actuar J 15:112–136MathSciNetCrossRefGoogle Scholar
  18. He Q-M (2014) Fundamentals of matrix-analytic methods. Springer, New YorkCrossRefGoogle Scholar
  19. Kendall WS, Saunders IW (1983) Epidemics in competition II: the general epidemic. J R Stat Soc, Series B 45:238–244MathSciNetGoogle Scholar
  20. Latouche G, Ramaswami V (1999) Introduction to matrix analytic methods in stochastic modeling. ASA and SIAM, PhiladelphiaCrossRefGoogle Scholar
  21. Lefèvre C, Simon M (2016) SIR epidemics with stages of infection. Adv Appl Probab 48:768–791MathSciNetCrossRefGoogle Scholar
  22. Lefèvre C, Picard P (2017) On the outcome of epidemics with detections. J Appl Probab 54:890–904MathSciNetCrossRefGoogle Scholar
  23. Lefèvre C, Picard P, Simon M (2017) Epidemic risk and insurance coverage. J Appl Probab 54:286–303MathSciNetCrossRefGoogle Scholar
  24. Lefèvre C, Simon M (2018) Cross-infection in epidemics spread by carriers. Stoch Model 34:166–185MathSciNetCrossRefGoogle Scholar
  25. López-Garcia M (2016) Stochastic descriptors in an SIR epidemic model for heterogeneous individuals in small networks. Math Biosci 271:42–61MathSciNetCrossRefGoogle Scholar
  26. Neuts MF, Li J-M (1996) An algorithmic study of S-I-R stochastic epidemic models. In: Heyde CC, Prohorov YV, Pyke R, Rachev ST (eds) Athens conference on applied probability and time series analysis. Applied probability in honor of J.M. Gani, vol 1. Springer, New York, pp 295–306Google Scholar
  27. Picard P, Lefèvre C (1993) Distribution of the final state and severity of epidemics with fatal risk. Stochastic Processes and their Applications 48:277–294MathSciNetCrossRefGoogle Scholar
  28. Picard P, Lefèvre C (1999) On the algebraic structure in Markovian processes of death and epidemic types. Adv Appl Probab 31:742–757MathSciNetCrossRefGoogle Scholar
  29. Saunders IW (1981) Epidemics in competition. J Math Biol 11:311–318MathSciNetCrossRefGoogle Scholar
  30. Severo NC (1969) Generalizations of some stochastic epidemic models. Math Biosci 4:395–402MathSciNetCrossRefGoogle Scholar
  31. Trapman P, Bootsma MCJ (2009) A useful relationship between epidemiology and queueing theory: the distribution of the number of infectives at the moment of the first detection. Math Biosci 219:15–22MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Département de Mathématique, Campus Plaine C.P. 210Université Libre de BruxellesBruxellesBelgium
  2. 2.School of Mathematics and StatisticsUniversity of MelbourneParkvilleAustralia

Personalised recommendations