Advertisement

Methodology and Computing in Applied Probability

, Volume 21, Issue 4, pp 1377–1394 | Cite as

Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data

  • Suparna BasuEmail author
  • Sanjay K. Singh
  • Umesh Singh
Article
  • 50 Downloads

Abstract

This article presents different estimation procedure for inverse Lindley distribution for Type-I hybrid censored data. We have obtained the parameter estimate under both the classical and Bayesian paradigm. In the classical set up, method of Maximum Likelihood(ML) and Maximum Product of spacings (MPS) estimates are obtained along with 95% asymptotic confidence interval. Bayesian estimation is implemented under the assumption of squared error loss function. An alternative Bayesian procedure is also proposed by incorporating the sample information through the spacings function instead of likelihood function. The Bayes estimates are computed using Markov Chain Monte Carlo (MCMC) technique due to their implicit nature. Highest posterior density (HPD) intervals based on these MCMC samples are evaluated and compared in terms of simulated risks. Further, a real data of 72 guinea pigs, infected with tuberculosis is analysed to justify the suitability of the afore-said estimation techniques under the specified censoring scheme.

Keywords

Alternative bayes procedure Markov chain Monte Carlo technique Uni-modal hazard function 

Mathematics Subject Classification (2010)

62Nxx 62Fxx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anatolyev S, Kosenok G (2005) An alternative to maximum likelihood based on spacings. Econ Theory 21(2):472–476MathSciNetzbMATHCrossRefGoogle Scholar
  2. Balakrishnan N, Kundu D (2013) Hybrid censoring: models, inferential results and applications. Comput Stat Data Anal 57(1):166–209MathSciNetzbMATHCrossRefGoogle Scholar
  3. Basu S, Singh SK, Singh U (2017) Parameter estimation of Inverse Lindley Distribution for Type-I censored data. Comput Stat 32(1):367–385MathSciNetzbMATHCrossRefGoogle Scholar
  4. Berger JO (1985) Statistical decision theory and Bayesian analysis. Springer-verlag New-York IncGoogle Scholar
  5. Bjerkedal T et al (1960) Acquisition of resistance in Guinea pigs infected with different doses of virulent Tubercle Bacilli. Am J Hyg 72(1):130–48Google Scholar
  6. Chandrasekar B, Childs A, Balakrishnan N (2004) Exact likelihood inference for the exponential distribution under generalized type-I and type-II hybrid censoring. Nav Res Logist 51(7):994–1004MathSciNetzbMATHCrossRefGoogle Scholar
  7. Chen MH, Shao QM (1999) Monte Carlo estimation of bayesian credible and HPD intervals. J Comput Graph Stat 8(1):69–92MathSciNetGoogle Scholar
  8. Chen SM, Bhattacharyya GK (1987) Exact confidence bounds for an exponential parameter under hybrid censoring. Commun Stat Theory Methods 16(8):2429–2442MathSciNetzbMATHCrossRefGoogle Scholar
  9. Cheng R, Stephens MA (1989) A Goodness-Of-Fit test using moran’s statistic with estimated parameters. Biometrika 76(2):385–392MathSciNetzbMATHCrossRefGoogle Scholar
  10. Cheng RCH, Amin NAK (1983) Estimating Parameters in Continuous Univariate distributions with a shifted origin. J R Stat Soc Ser B Methodol 45(3):394–403MathSciNetzbMATHGoogle Scholar
  11. Cheng RCH, Iles TC (1987) Corrected maximum likelihood in non-regular problems. J R Stat Soc Ser B Methodol 49(1):95–101zbMATHGoogle Scholar
  12. Cheng RCH, Traylor L (1995) Non-regular Maximum Likelihood problems. J R Stat Soc Ser B Methodol 97(1):3–44MathSciNetzbMATHGoogle Scholar
  13. Chib S, Greenberg E (1995) Understanding the metropolis-hastings algorithm. Am Stat 49(4):327–335Google Scholar
  14. Childs A, Chandrasekar B, Balakrishnan N, Kundu D (2003) Exact likelihood inference based on Type-I and type-II hybrid censored samples from the exponential distribution. Ann Inst Stat Math 55(2):319–330MathSciNetzbMATHGoogle Scholar
  15. Coolen FPA, Newby MJ (1990) A note on the use of the product of spacings in Bayesian Inference. Technische Universiteit Eindhoven. https://pure.tue.nl/ws/files/1918253/338185.pdf
  16. Coolen FPA, Newby MJ (1994) Bayesian estimation of location parameters in life distributions. Reliab Eng Syst Saf 45(3):293–298CrossRefGoogle Scholar
  17. Dey S, Pradhan B (2014) Generalized inverted exponential distribution under hybrid censoring. Stat Methodol 18(Supplement C):101–114MathSciNetzbMATHCrossRefGoogle Scholar
  18. Draper N, Guttman I (1987) Bayesian analysis of Hybrid life tests with Exponential failure times. Ann Inst Stat Math 39(1):219–225MathSciNetzbMATHCrossRefGoogle Scholar
  19. Dube S, Pradhan B, Kundu D (2011) Parameter estimation of the hybrid censored log-normal distribution. J Stat Comput Simul 81(3):275–287MathSciNetzbMATHCrossRefGoogle Scholar
  20. Ebrahimi N (1986) Estimating the parameters of an Exponential Distribution from a Hybrid life test. J Stat Planning Inference 14(2-3):255–261MathSciNetzbMATHCrossRefGoogle Scholar
  21. Efron B (1988) Logistic regression, survival analysis, and the Kaplan-Meier curve. J Am Stat Assoc 83(402):414–425MathSciNetzbMATHCrossRefGoogle Scholar
  22. Epstein B (1954) Truncated life tests in the exponential case. Ann Math Stat 25 (3):555–564MathSciNetzbMATHCrossRefGoogle Scholar
  23. Fairbanks K, Madsen R, Dykstra R (1982) A confidence interval for an exponential parameter from a hybrid life test. J Am Stat Assoc 77(377):137–140MathSciNetzbMATHCrossRefGoogle Scholar
  24. Ghitany M, Atieh B, Nadarajah S (2008) Lindley distribution and its application. Math Comput Simul 78(4):493–506MathSciNetzbMATHCrossRefGoogle Scholar
  25. Ghosh K, Jammalamadaka SR (2001) A general estimation method using spacings. J Stat Planning Inference 93(1):71–82MathSciNetzbMATHCrossRefGoogle Scholar
  26. Gupta RD, Kundu D (1998) Hybrid Censoring Schemes with Exponential failure Distribution. Commun Stat - Theory Methods 27(12):3065–3083zbMATHCrossRefGoogle Scholar
  27. Kundu D, Howlader H (2010) Bayesian inference and prediction of the inverse Weibull distribution for type-II censored data. Comput Stat Data Anal 54(6):1547–1558MathSciNetzbMATHCrossRefGoogle Scholar
  28. Pitman EJG (1979) Some basic theory for Statistical Inference. Monographs on applied probability and statistics. Chapman & HallGoogle Scholar
  29. Ranneby B (1984) The maximum spacing method: an estimation method related to the maximum likelihood method. Scand J Stat 11(2):93–112MathSciNetzbMATHGoogle Scholar
  30. Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer Texts in Statistics. Springer, New YorkCrossRefGoogle Scholar
  31. Roberts GO, Smith AFM (1994) Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stoch Process Appl 49(2):207–216MathSciNetzbMATHCrossRefGoogle Scholar
  32. Shao Y, Hahn MG, et al. (1999) Maximum product of spacings method: a unified formulation with illustration of strong consistency. Ill J Math 43(3):489–499MathSciNetzbMATHCrossRefGoogle Scholar
  33. Sharma VK, Singh SK, Singh U, Agiwal V (2015) The inverse Lindley distribution : A stress-strength reliability model with application to head and neck cancer data. J Ind Prod Eng 32(3):162–173Google Scholar
  34. Singh SK, Singh U, Yadav AS (2014) Parameter estimation in Marshall-Olkin Exponential distribution under Type-I Hybrid Censoring Scheme. J Stat Appl Probab 3(2):117,127Google Scholar
  35. Singh U, Singh SK, Singh RK (2014) Product spacings as an alternative to likelihood for bayesian inferences. J Stat Appl Probab 3(2):179–188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Suparna Basu
    • 1
    • 2
    Email author
  • Sanjay K. Singh
    • 2
    • 3
  • Umesh Singh
    • 2
    • 3
  1. 1.Department of StatisticsUniversity of BurdwanBardhamanIndia
  2. 2.Department of Statistics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  3. 3.DST-CIMSBanaras Hindu UniversityVaranasiIndia

Personalised recommendations