Advertisement

Methodology and Computing in Applied Probability

, Volume 21, Issue 4, pp 1119–1149 | Cite as

On Lattice Path Counting and the Random Product Representation, with Applications to the Er/M/1 Queue and the M/Er/1 Queue

  • Xiaoyuan Liu
  • Brian FralixEmail author
Article
  • 49 Downloads

Abstract

We explain how lattice-path counting techniques can be used in conjunction with the random-product representations from Buckingham and Fralix (Markov Process Related Field 21:339–368 2015) to study both the stationary and time-dependent behavior of Markovian queueing systems, and continuous-time Markov chains in general. We illustrate how the approach works by applying it to both the Er/M/1 queue, and the M/Er/1 queue. Interestingly, through this approach we show that the stationary distributions, as well as the Laplace transforms of the transition functions associated with both the Er/M/1 queue and the M/Er/1 queue, can be expressed explicitly in terms of generalized binomial series from Chapter 5 of the text Concrete Mathematics of Graham, Knuth, and Patashnik.

Keywords

Er/M/1 queue Generalized binomial series Lattice path counting M/Er/1 queue Markovian queues 

Mathematics Subject Classification (2010)

60J27 60J28 60K25 90B22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

BF gratefully acknowledges the support of the National Science Foundation, via grant NSF-CMMI-1435261.

References

  1. Abate J, Whitt W (1994) Transient behavior of the M/G/1 workload process. Oper Res 42:750–764MathSciNetCrossRefGoogle Scholar
  2. Abate J, Whitt W (1995) Numerical inversion of Laplace transforms of probability distributions. ORSA J Comput 7:36–43CrossRefGoogle Scholar
  3. Adan I, Van de Waarsenburg WA, Wessels J (1996) Analyzing e k/e r/c queues. Eur J Oper Res 92:112–124CrossRefGoogle Scholar
  4. Adan I, Van leeuwaarden J, Selen J (2017) Analysis of Structured Markov Processes. Draft accessible through the arXiv:1709.09060
  5. Baccelli F, Massey WA (1989) A sample path analysis of the M/M/1 queue. J Appl Probab 26:418–422MathSciNetCrossRefGoogle Scholar
  6. Baek JW, Moon SK, Lee HW (2014) A time-dependent busy period queue length formula for the M/Ek/1 queue. Stat Probab Lett 87:98–104CrossRefGoogle Scholar
  7. Böhm W (2010) Lattice path counting and the theory of queues. J Stat Plan Inf 140:2168–2183MathSciNetCrossRefGoogle Scholar
  8. Böhm W, Krinik A, Mohanty SG (1997) The combinatorics of birth-death processes and applications to queues. Queue Syst 26:255–267MathSciNetCrossRefGoogle Scholar
  9. Buckingham P, Fralix B (2015) Some new insights into Kolmogorov’s criterion, with applications to hysteretic queues. Markov Process Related Field 21:339–368MathSciNetzbMATHGoogle Scholar
  10. Champernowne DG (1956) An elementary method of solution of the queueing problem with a single server and constant parameters. J Royal Stat Soc B 18:125–128MathSciNetzbMATHGoogle Scholar
  11. Flajolet P, Guillemin F (2000) The formal theory of birth-and-death processes, lattice path combinatorics and continued fractions. Adv Appl Probab 32:750–778MathSciNetCrossRefGoogle Scholar
  12. Fralix B (2015) When are two Markov chains similar?. Stat Probab Lett 107:199–203MathSciNetCrossRefGoogle Scholar
  13. Fralix B, Zwart B (2011) Time-dependent properties of symmetric queues. Queue Syst 67:33–45MathSciNetCrossRefGoogle Scholar
  14. Graham RL, Knuth DE, Patashnik O (1994) Concrete mathematics. Addison-Wesley Publishing Company, BostonzbMATHGoogle Scholar
  15. Grassmann WK (2011) A new method for finding the characteristic roots of e n/e m/1 queues. Methodol Comput Appl Probab 13:873–886MathSciNetCrossRefGoogle Scholar
  16. Griffiths JD, Leonenko GM, Williams JE (2006) The transient solution to m/e k/1 queue. Oper Res Lett 34:349–354MathSciNetCrossRefGoogle Scholar
  17. Griffiths JD, Leonenko GM, Williams JE (2008) Approximation to the transient solution of the m/e k/1 queue. INFORMS J Comput 20:510–515MathSciNetCrossRefGoogle Scholar
  18. He Q-M (2014) Fundamentals of matrix-analytic methods. Springer, New YorkCrossRefGoogle Scholar
  19. Jain JL, Mohanty SG, Böhm W (2007) A course on queueing models. Chapman and Hall/CRC Press, Bota RatonzbMATHGoogle Scholar
  20. Joyner J, Fralix B (2016) A new look at Markov processes of G/M/1-type. Stoch Model 32:253–274MathSciNetCrossRefGoogle Scholar
  21. Joyner J, Fralix B (2018) A new look at block-structured Markov processes. Currently under revision: available via bfralix.people.clemson.edu/preprints.htm
  22. Krinik A, Rubino G, Marcus D, Swift RJ, Kasfy H, Lam H (2005) Dual processes to solve single server systems. J Stat Plan Inf 135:121–147MathSciNetCrossRefGoogle Scholar
  23. Kyprianou AE (2006) Introductory lectures on fluctuations of lévy processes with applications. Springer, BerlinzbMATHGoogle Scholar
  24. Latouche G, Ramaswami V (1999) Introduction to matrix analytic methods in stochastic modeling. ASA-SIAM Publications, PhiladelphiaCrossRefGoogle Scholar
  25. Van Houdt B, Van Leeuwaarden JSH (2011) Triangular M/G/1-type and tree-like quasi-birth-death Markov chains. INFORMS J Comput 23:165–171MathSciNetCrossRefGoogle Scholar
  26. Van Leeuwaarden JSH, Winands EMM (2006) Quasi-birth-and-death processes with an explicit rate matrix. Stoch Model 22:77–98MathSciNetCrossRefGoogle Scholar
  27. Van Leeuwaarden JSH, Squillante MS, Winands EMM (2009) Quasi-birth-and-death processes, lattice-path counting, and hypergeometric functions. J Appl Probab 46:507–520MathSciNetCrossRefGoogle Scholar
  28. Leonenko GM (2009) A new formula for the transient solution of the Erlang queueing model. Stat Probab Lett 79:400–406MathSciNetCrossRefGoogle Scholar
  29. Neuts MF (1981) Matrix-geometric solutions in stochastic models: an algorithmic approach. Johns Hopkins University Press, BaltimorezbMATHGoogle Scholar
  30. Le Ny L-M, Rubino G, Sericola B (1991) Calculating the busy period distribution of the M/M/1 queue. [Research Report] RR-1501, INRIA, inria-00075061: available via https://hal.inria.fr/inria-00075061
  31. Renault M (2007) Four proofs of the ballot theorem. Math Mag 80:345–352MathSciNetCrossRefGoogle Scholar
  32. Van Vianen LA, Gabor AF, van Ommeren J-K (2016) Waiting times in classical priority queues via elementary lattice path counting. Queue Syst 84:295–307MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesClemson UniversityClemsonUSA

Personalised recommendations