Methodology and Computing in Applied Probability

, Volume 20, Issue 3, pp 817–838 | Cite as

Ordering Results for Risk Bounds and Cost-efficient Payoffs in Partially Specified Risk Factor Models

  • Jonathan Ansari
  • Ludger RüschendorfEmail author


Motivated by the problem of sharp risk bounds in partially specified risk factor models and by the method of cost-efficient payoffs with given payoff structure we introduce and describe some stochastic odering problems for conditionally comonotonic resp. antimonotonic random variables. The aim is to describe the influence of the specified dependence of the components of the random vector X with a benchmark Z on the risk bounds in a risk portfolio resp. on the gain of cost efficiency of the optimal payoffs. We obtain in particular explicit results in dependence on distributional parameters for elliptical models in the case of risk bounds and for the multivariate Samuelson model in the case of cost efficient payoffs.


Supermodular function Risk factor models Cost-efficient payoffs Conditionally comonotonic vectors Elliptical distributions 

Mathematics Subject Classification (2010)

60 E 15 62 P 05 91 B 28 91 B 30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arlotto A, Scarsini M (2009) Hessian orders and multinormal distributions. J Multivar Anal 100(10):2324–2330MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bernard C, Maj M, Vanduffel S (2011) Improving the design of financial products in a multidimensional Black-Scholes market. N Am Actuar J 15(1):77–96MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bernard C, Rüschendorf L, Wolf V (2013) Optimal claims with fixed payoff structure. J Appl Probab 51:176–188MathSciNetGoogle Scholar
  4. Bernard C, Boyle PP, Vanduffel S (2014a) Explicit representation of cost-efficient strategies. Finance 35(2):5–55Google Scholar
  5. Bernard C, Rüschendorf L, Vanduffel S (2014b) Optimal claims with fixed payoff structure. J Appl Probab 51A:175–188MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bernard C, Moraux F, Rüschendorf L, Vanduffel S (2015) Optimal payoffs under state-dependent constraints. Quant Finan 15(7):1157–1173CrossRefGoogle Scholar
  7. Bernard C, Rüschendorf L, Vanduffel S, Wang R (2016) Risk bounds for factor models. PreprintGoogle Scholar
  8. Cambanis S, Simons G, Stout W (1976) Inequalities for Ek(X,Y) when the marginals are fixed. Z Wahrscheinlichkeitstheor Verw Geb 36:285–294MathSciNetCrossRefzbMATHGoogle Scholar
  9. Cambanis S, Huang S, Simonsm G (1981) On the theory of elliptically contoured distributions. J. Multivar. Anal. 11:368–385MathSciNetCrossRefzbMATHGoogle Scholar
  10. Ding Y, Zhang X (2004) Some stochastic orders of Kotz-type distributions. Stat Probab Lett 69(4):389–396MathSciNetCrossRefzbMATHGoogle Scholar
  11. Dybvig P (1988) Distributional analysis of portfolio choice. J Bus 61(3):369–393CrossRefGoogle Scholar
  12. Fang K-T, Zhang Y-T (1990) Generalized multivariate analysis. Berlin etc. Springer-Verlag, Beijing: Science PressGoogle Scholar
  13. Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, LondonCrossRefzbMATHGoogle Scholar
  14. Marshall AW, Olkin I (1979) Inequalities: theory of majorization and its applications. Mathematics in Science and Engineering, vol 143. Academic Press., New York etc.Google Scholar
  15. Müller A, Stoyan D (2002) Comparison methods for stochastic models and risks. Wiley, ChichesterzbMATHGoogle Scholar
  16. Nelsen RB (1999) An introduction to copulas. Springer, New York, NYCrossRefzbMATHGoogle Scholar
  17. Rüschendorf L (1981) Stochastically ordered distributions and monotonicity of the OC-function of sequential probability ratio tests. Math Oper Stat Ser Stat 12:327–338MathSciNetzbMATHGoogle Scholar
  18. Rüschendorf L (2009) On the distributional transform, Sklar’s theorem, and the empirical copula process. J Stat Plann Inference 139(11):3921–3927MathSciNetCrossRefzbMATHGoogle Scholar
  19. Rüschendorf L (2013a) Risk bounds, worst case depenence and optimal claims and contracts. In: Proceedings of the AFMATH Conference, Brussels, pp 23–36Google Scholar
  20. Rüschendorf L (2013b) Mathematical Risk Analysis. SpringerGoogle Scholar
  21. Rüschendorf L, Wolf V (2015) Cost-efficiency in multivariate Lévy models. Depend Model 3:1–16MathSciNetzbMATHGoogle Scholar
  22. Rüschendorf L, Wolf V (2016) Construction and hedging of optimal payoffs in Lévy models. In: Kallsen J, Papapantoleon A (eds) Advanced Modelling in Mathematical Finance. SpringerGoogle Scholar
  23. Shaked M, Shanthikumar J (1997) Supermodular stochastic orders and positive dependence of random vectors. J Multivar Anal 61(1):86–101. art. no mv971656MathSciNetCrossRefzbMATHGoogle Scholar
  24. Shaked M, Shanthikumar JG (2007) Stochastic Orders SpringerGoogle Scholar
  25. Tchen AH (1980) Inequalities for distributions with given marginals. Ann Probabs 8:814–827MathSciNetCrossRefzbMATHGoogle Scholar
  26. von Hammerstein EA, Lütkebohmert E, Rüschendorf L, Wolf V (2014) Optimality of payoffs in Lévy models. Int J Theor Appl Finance 17(6):1450041MathSciNetCrossRefzbMATHGoogle Scholar
  27. Wolf V (2014) Comparison of Markovian price processes and optimality of payoffs. University of Freiburg, DissertationzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of FreiburgFreiburg im BreisgauGermany

Personalised recommendations