Advertisement

Strong generators of the subregular \(\mathcal {W}\)-algebra \(\mathcal {W}^{K-N}(\mathfrak {sl}_N, f_{sub})\) and combinatorial description at critical level

  • Naoki Genra
  • Toshiro KuwabaraEmail author
Article
  • 9 Downloads

Abstract

We construct explicitly strong generators of the affine \(\mathcal {W}\)-algebra \(\mathcal {W}^{K_0-N}(\mathfrak {sl}_N, f_{sub})\) of subregular type A. Moreover, we are able to describe the OPEs between them at critical level. We also give a description the affine \(\mathcal {W}\)-algebra \(\mathcal {W}^{-N}(\mathfrak {sl}_N, f_{sub})\) in terms of certain fermionic fields, which was conjectured by Adamović.

Keywords

Vertex algebra Affine W-algebra Critical level Feigin–Frenkel center 

Mathematics Subject Classification

Primary 17B69 Secondary 81R10 

Notes

Acknowledgements

One of the main results of this paper, Theorem 4.5, was first conjectured by Dražen Adamović. The authors would like to express their gratitude to him for showing us his private notes [1]. The authors are deeply grateful to Tomoyuki Arakawa for valuable comments. The authors also thank Boris Feigin and Alexei Semikhatov for fruitful discussion on their construction of the vertex algebra \(W^{(2)}_N\). The second author thanks Yoshihiro Takeyama for discussion on the proof of Lemma 3.6. The first author was supported by Grant-in-Aid for JSPS Fellows (No.17J07495) and is supported by JSPS Overseas Research Fellowships. The second author was supported by JSPS KAKENHI Grant Number JP17K14151.

References

  1. 1.
    Adamović, D.: Realization of \({W}^{(2)}_n\) algebra and its Whittaker modules at the critical level. private notes pp. 1–4 (2015)Google Scholar
  2. 2.
    Arakawa, T.: \(W\)-algebras at the critical level. In: Algebraic Groups and Quantum Groups, Contemp. Math., Vol. 565, pp. 1–13. Amer. Math. Soc., Providence, RI (2012).  https://doi.org/10.1090/conm/565/11184
  3. 3.
    Arakawa, T.: Introduction to W-algebras and their representation theory. In: Perspectives in Lie theory, Springer INdAM Ser., Vol. 19, pp. 179–250. Springer, Cham (2017)Google Scholar
  4. 4.
    Arakawa, T., Creutzig, T., Linshaw, A.R.: W-algebras as coset vertex algebras. to appear in Invent. Math. (2019). arXiv:1801.03822
  5. 5.
    Arakawa, T., Molev, A.: Explicit generators in rectangular affine \({\cal{W}}\)-algebras of type \(A\). Lett. Math. Phys. 107(1), 47–59 (2017).  https://doi.org/10.1007/s11005-016-0890-2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arakawa, T., Moreau, A.: Arc spaces and chiral symplectic cores. to appear in the special issue of Publ. Res. Inst. Math. (2019). arXiv:1802.06533
  7. 7.
    De Sole, A., Kac, V.G.: Finite versus affine \(W\)-algebras. Jpn. J. Math. 1(1), 137–261 (2006).  https://doi.org/10.1007/s11537-006-0505-2 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fateev, V.A., Lukyanov, S.L.: Additional symmetries and exactly solvable models of two-dimensional conformal field theory. Sov. Sci. Rev. A. Phys. 15(1), 1–117 (1990)zbMATHGoogle Scholar
  9. 9.
    Feigin, B., Frenkel, E.: Quantization of the Drinfel’d–Sokolov reduction. Phys. Lett. B 246(1–2), 75–81 (1990).  https://doi.org/10.1016/0370-2693(90)91310-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Feigin, B.L., Semikhatov, A.M.: \( W^{(2)}_n\) algebras. Nuclear Phys. B 698(3), 409–449 (2004).  https://doi.org/10.1016/j.nuclphysb.2004.06.056 ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Frenkel, E.: Wakimoto modules, opers and the center at the critical level. Adv. Math. 195(2), 297–404 (2005).  https://doi.org/10.1016/j.aim.2004.08.002 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, Vol. 88, 2nd edn. American Mathematical Society, Providence, RI (2004).  https://doi.org/10.1090/surv/088
  13. 13.
    Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992).  https://doi.org/10.1215/S0012-7094-92-06604-X MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Friedan, D., Martinec, E., Shenker, S.: Conformal invariance, supersymmetry and string theory. Nuclear Phys. B 271(1), 93–165 (1986).  https://doi.org/10.1016/0550-3213(86)90356-1 ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Genra, N.: Screening operators for \({\cal{W}}\)-algebras. Selecta Math. (N.S.) 23(3), 2157–2202 (2017).  https://doi.org/10.1007/s00029-017-0315-9 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Genra, N.: Screening Operators and Parabolic Inductions for Affine W-Algebras. arXiv e-prints arXiv:1806.04417 (2018)
  17. 17.
    Kac, V.: Vertex Algebras for Beginners, University Lecture Series, Vol. 10, 2nd edn. American Mathematical Society, Providence, RI (1998).  https://doi.org/10.1090/ulect/010
  18. 18.
    Kac, V., Roan, S.S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241(2–3), 307–342 (2003).  https://doi.org/10.1007/s00220-003-0926-1 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kac, V.G., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185(2), 400–458 (2004).  https://doi.org/10.1016/j.aim.2003.12.005 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kac, V.G., Wakimoto, M.: Corrigendum to: quantum reduction and representation theory of superconformal algebras. Adv. Math. 193(2), 453–455 (2005).  https://doi.org/10.1016/j.aim.2005.01.001 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Molev, A.: Sugawara Operators for Classical Lie Algebras. Mathematical Surveys and Monographs, vol. 229. American Mathematical Society, Providence (2018)CrossRefzbMATHGoogle Scholar
  22. 22.
    Premet, A.: Special transverse slices and their enveloping algebras. Adv. Math. 170(1), 1–55 (2002).  https://doi.org/10.1006/aima.2001.2063.. (With an appendix by Serge Skryabin)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Smith, S.P.: A class of algebras similar to the enveloping algebra of sl(2). Trans. Am. Math. Soc. 322(1), 285–314 (1990).  https://doi.org/10.2307/2001532 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Wakimoto, M.: Fock representations of the affine Lie algebra \(A^{(1)}_1\). Commun. Math. Phys. 104(4), 605–609 (1986). http://projecteuclid.org/euclid.cmp/1104115171
  25. 25.
    Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9(1), 237–302 (1996).  https://doi.org/10.1090/S0894-0347-96-00182-8 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Mathematics, Faculty of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations