Advertisement

Absence of wave operators for one-dimensional quantum walks

  • Kazuyuki WadaEmail author
Article
  • 4 Downloads

Abstract

We show that there exist pairs of two time evolution operators which do not have wave operators in a context of one-dimensional discrete time quantum walks. As a consequence, the borderline between existence and nonexistence of wave operators is decided.

Keywords

Scattering theory Wave operator Quantum walk 

Mathematics Subject Classification

46N50 47A40 

Notes

Acknowledgements

The author thanks the referee for useful comments.

References

  1. 1.
    Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 37–49. ACM, New York (2001)Google Scholar
  2. 2.
    Chisaki, K., Hamada, M., Konno, N., Segawa, E.: Limit theorems for discrete-time quantum walks on trees. Interdiscip. Inf. Sci. 15, 423–429 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chisaki, K., Konno, N., Segawa, E.: Limit theorems for the discrete-time quantum walk on a graph with joined half lines. Quantum Inf. Proc. 12(3 and 4), 314–333 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dereziński, J., Gérard, C.: Scattering Theory of Classical and Quantum N-particle Systems. Springer-Verlag, Berlin (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    Endo, S., Endo, T., Konno, N., Segawa, E., Takei, M.: Limit theorems of a two-phase quantum walk with one defect. Quantum Inf. Comput. 15(15–16), 1373–1396 (2015)MathSciNetGoogle Scholar
  6. 6.
    Endo, S., Endo, T., Konno, N., Segawa, E., Takei, M.: Weak limit theorem of a two-phase quantum walk with one defect. Interdiscip. Inf. Sci. 22, 17–29 (2016)MathSciNetGoogle Scholar
  7. 7.
    Endo, T., Konno, N., Obuse, H.: Relation between two-phase quantum walks and the topological invariant. arXiv:1511.04230 (2015). Accessed 11 June 2019
  8. 8.
    Fuda, T., Funakawa, D., Suzuki, A.: Weak limit theorem for a one-dimensional split-step quantum walk. arXiv:1804.05125 (2018). Accessed 20 Aug 2018
  9. 9.
    Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Gudder, S.P.: Quantum Probability. Probability and Mathematical Statistics. Academic Press Inc., Boston, MA (1988)zbMATHGoogle Scholar
  11. 11.
    Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69, 052323 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Ishida, A.: The borderline of the short-range condition for the repulsive Hamiltonian. J. Math. Anal. App. 438, 267–273 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Konno, N.: Quantum random walks in one dimension. Quantum Inf. Proc. 1, 245–354 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Konno, N.: A new type of limit theorems for the one-dimensional quantum random walk. J. Math. Sci. Jpn. 57, 1179–1195 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liu, C.: Asymptotic distribution of quantum walks on the line with two entangled coins. Quantum Inf. Process. (2012).  https://doi.org/10.1007/s11128-012-0361-3 ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Machida, T., Konno, N.: Limit theorem for a time-dependent coined quantum walk on the line. In: IWNC 2009 Proceedings in Information and Communications Technology, vol. 2, pp. 226–235 (2010)Google Scholar
  17. 17.
    Ohno, H.: Unitary equivalent classes of one-dimensional quantum walks. Quantum Inf. Process. 15, 3599–3617 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ozawa, T.: Non-existence of wave operators for Stark effect Hamiltonians. Math. Z. 207, 335–339 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. III, Scattering Theory. Academic Press, Cambridge (1980)zbMATHGoogle Scholar
  20. 20.
    Richard, S., Suzuki, A., Tiedra de Aldecoa, R.: Quantum walks with an anisotropic coin I: spectral theory. Lett. Math. Phys. 108(2), 331–357 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Richard, S., Suzuki, A., Tiedra de Aldecoa, R.: Quantum walks with an anisotropic coin II: scattering theory. Lett. Math. Phys. (2018).  https://doi.org/10.1007/s11005-018-1100-1 zbMATHGoogle Scholar
  22. 22.
    Sato, M., Kobayashi, N., Katori, M., Konno, N.: Large qudit limit of one dimensional quantum walks. arXiv:0802.1997 (2008). Accessed 11 June 2019
  23. 23.
    Segawa, E., Suzuki, A.: Generator of an abstract quantum walk. Quantum Stud. Math. Found. 3(1), 11–30 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Suzuki, A.: Asymptotic velocity of a position-dependent quantum walk. Quamtum Inf. Process. 15(1), 103–119 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015 (2012).  https://doi.org/10.1007/s11128-012-0432-5 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Venegas-Andraca, S.E., Ball, J.L., Burnett, K., Bose, S.: Quantum walks with entangled coins. New J. Phys. 7, 221 (2005)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Wada, K.: A weak limit theorem for a class of long range type quantum walks in 1d. arXiv:1901.10362 (2019). Accessed 10 Feb 2019
  28. 28.
    Watanabe, K., Kobayashi, N., Katori, M., Konno, N.: Limit distributions of two-dimensional quantum walks. Phys. Rev. A 77, 062331 (2008).  https://doi.org/10.1103/PhysRevA.77.062331 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Institute of TechnologyHachinohe CollegeHachinoheJapan

Personalised recommendations