Advertisement

Diagrammatic proof of the large N melonic dominance in the SYK model

  • V. Bonzom
  • V. Nador
  • A. TanasaEmail author
Article
  • 4 Downloads

Abstract

A crucial result on the celebrated Sachdev–Ye–Kitaev model is that its large N limit is dominated by melonic graphs. In this letter, we offer a rigorous, diagrammatic proof of that result by direct, combinatorial analysis of its Feynman graphs.

Keywords

Sachdev–Ye–Kitaev model Melonic graphs Tensor models 

Mathematics Subject Classification

81Q30 05C22 

Notes

References

  1. 1.
    Benedetti, D., Carrozza, S., Gurau, R., Kolanowski, M.: The \(1/N\) expansion of the symmetric traceless and the antisymmetric tensor models in rank three (2017) (unpublished)Google Scholar
  2. 2.
    Benedetti, D., Carrozza, S., Gurau, R., Sfondrini, A.: Tensorial Gross–Neveu models. JHEP 01, 003 (2018).  https://doi.org/10.1007/JHEP01(2018)003 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benedetti, D., Gurau, R.: 2PI effective action for the SYK model and tensor field theories. JHEP 05, 156 (2018).  https://doi.org/10.1007/JHEP05(2018)156 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonzom, V.: Large \(N\) limits in tensor models: towards more universality classes of colored triangulations in dimension \(d\ge 2\). SIGMA 12, 073 (2016).  https://doi.org/10.3842/SIGMA.2016.073 zbMATHGoogle Scholar
  5. 5.
    Bonzom, V., Gurau, R., Riello, A., Rivasseau, V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174–195 (2011).  https://doi.org/10.1016/j.nuclphysb.2011.07.022 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bonzom, V., Lionni, L., Tanasa, A.: Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders. J. Math. Phys. 58(5), 052301 (2017).  https://doi.org/10.1063/1.4983562 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bulycheva, K., Klebanov, I.R., Milekhin, A., Tarnopolsky, G.: Spectra of operators in large \(N\) tensor models. Phys. Rev. D 97(2), 026016 (2018).  https://doi.org/10.1103/PhysRevD.97.026016 ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Carrozza, S.: Large \(N\) limit of irreducible tensor models: \(O(N)\) rank-3 tensors with mixed permutation symmetry. JHEP 06, 039 (2018).  https://doi.org/10.1007/JHEP06(2018)039 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carrozza, S., Tanasa, A.: \(O(N)\) Random tensor models. Lett. Math. Phys. 106(11), 1531–1559 (2016).  https://doi.org/10.1007/s11005-016-0879-x ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dartois, S., Rivasseau, V., Tanasa, A.: The \(1/N\) expansion of multi-orientable random tensor models. Annales Henri Poincare 1(5), 965–984 (2014).  https://doi.org/10.1007/s00023-013-0262-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Giombi, S., Klebanov, I.R., Popov, F., Prakash, S., Tarnopolsky, G.: Prismatic large \(N\) models for bosonic tensors. Phys. Rev. D 98, 105005 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Gross, D., Rosenhaus, V.: All point correlation functions in SYK. J. High Energy Phys. (2017). arXiv:1710.08113
  13. 13.
    Gurau, R.: Quenched equals annealed at leading order in the colored SYK model. EPL 119(3), 30003 (2017).  https://doi.org/10.1209/0295-5075/119/30003 ADSCrossRefGoogle Scholar
  14. 14.
    Gurau, R.: Random Tensor Models. Oxford University Press, Oxford (2017)zbMATHGoogle Scholar
  15. 15.
    Gurau, R.: The complete \(1/N\) expansion of a SYK-like tensor model. Nucl. Phys. B 916, 386–401 (2017).  https://doi.org/10.1016/j.nuclphysb.2017.01.015 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gurau, R.: The \(1/N\) expansion of tensor models with two symmetric tensors. Commun. Math. Phys. 360(3), 985–1007 (2018).  https://doi.org/10.1007/s00220-017-3055-y ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kitaev, A.: A simple model of quantum holography (2015). http://online.kitp.ucsb.edu/online/entangled15/kitaev/. KITP Program: Entanglement in Strongly-Correlated Quantum Matter
  18. 18.
    Klebanov, I.R., Milekhin, A., Popov, F., Tarnopolsky, G.: Spectra of eigenstates in fermionic tensor quantum mechanics. Phys. Rev. D 97(10), 106023 (2018).  https://doi.org/10.1103/PhysRevD.97.106023 ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Klebanov, I.R., Tarnopolsky, G.: Uncolored random tensors, melon diagrams, and the Sachdev–Ye–Kitaev models. Phys. Rev. D 95(4), 046004 (2017).  https://doi.org/10.1103/PhysRevD.95.046004 ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Maldacena, J., Stanford, D.: Comments on the Sachdev–Ye–Kitaev model. Phys. Rev. D 9, 4 (2016)Google Scholar
  21. 21.
    Pakrouski, K., Klebanov, I.R., Popov, F., Tarnopolsky, G.: Spectrum of Majorana quantum mechanics with \(O(4)^3\) symmetry. Phys. Rev. Lett. 122, 011601 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Parcollet, O., Georges, A.: Non-Fermi-liquid regime of a dopped Mott insulator. Phys. Rev. B 5(9), 5341–5360 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Polchinski, J., Rosenhaus, V.: The spectrum in the Sachdev–Ye–Kitaev model. J. High Energy Phys. (2016). arXiv:1601.06768
  24. 24.
    Sachdev, S., Ye, J.: Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. (1992). arXiv:cond-mat/9212030
  25. 25.
    Tanasa, A.: The multi-orientable random tensor model, a review. SIGMA 12, 056 (2016).  https://doi.org/10.3842/SIGMA.2016.056 MathSciNetzbMATHGoogle Scholar
  26. 26.
    Witten, E.: An SYK-like model without disorder (2016) (unpublished)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.LIPN, UMR CNRS 7030, Institut GaliléeUniversité Paris 13VilletaneuseFrance
  2. 2.LaBRI, UMR CNRS 5800Université de BordeauxTalenceFrance
  3. 3.Horia Hulubei National Institute of Physics and Nuclear EngineeringMagureleRomania
  4. 4.Institut Universitaire de FranceParisFrance

Personalised recommendations