Advertisement

Letters in Mathematical Physics

, Volume 109, Issue 7, pp 1665–1682 | Cite as

The unrolled quantum group inside Lusztig’s quantum group of divided powers

  • Simon LentnerEmail author
Article
  • 20 Downloads

Abstract

In this letter we prove that the unrolled small quantum group, appearing in quantum topology, is a Hopf subalgebra of Lusztig’s quantum group of divided powers. We do so by writing down non-obvious primitive elements with the correct adjoint action. As application, we explain how this gives a realization of the unrolled quantum group as operators on a conformal field theory and match some calculations on this side. In particular, our results explain a prominent weight shift that appears in Feigin and Tipunin (Logarithmic CFTs connected with simple Lie algebras, preprint, 2010. arXiv:1002.5047). Our result extends to other Nichols algebras of diagonal type, including super-Lie algebras.

Keywords

Quantum group Unrolled quantum group Conformal field theory 

Mathematics Subject Classification

16T05 17B69 

Notes

Acknowledgements

The author thanks C. Schweigert for interesting discussions, input and support. The author receives additional support by the DFG Graduiertenkolleg RTG 1670 at the University of Hamburg.

References

  1. 1.
    Andruskiewitsch, N., Angiono, I., Rossi Bertone, F.: The quantum divided power algebra of a finite-dimensional Nichols algebra of diagonal type, preprint. arXiv:1501.04518 (2015)
  2. 2.
    Angiono, I.: Distinguished pre-Nichols algebras. Transform. Groups 21(1), 1–33 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Andruskiewitsch, N.: Note on extensions of Hopf algebras. Can. J. Math. 48(1), 3–42 (1996)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Andruskiewitsch, N., Heckenberger, I., Schneider, H.-J.: The Nichols algebra of a semisimple Yetter–Drinfeld module. Am. J. Math. 132(6), 1493–1547 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Andruskiewitsch, N., Schneider, H.-J.: Finite quantum groups and Cartan matrices. Adv. Math. 154(1), 1–45 (2000)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. 2(1), 375–417 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Andruskiewitsch, N., Schweigert, C.: On unrolled Hopf algebras. arXiv:1701.00153v1
  8. 8.
    Angiono, I., Yamane, H.: The \(R\)-matrix of quantum doubles of Nichols algebras of diagonal type, preprint. arXiv:1304.5752 (2013)
  9. 9.
    Costantino, F., Geer, N., Patureau-Mirand, B.: Some remarks on the unrolled quantum group of sl (2). J. Pure Appl. Algebra 219, 3238–3262 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cuntz, M., Heckenberger, I.: Weyl groupoids with at most three objects. J. Pure Appl. Algebra 213(6), 1112–1128 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Y.: Kazhdan–Lusztig correspondence for the representation category of the triplet \(\cal{W}\)-algebra in logarithmic CFT. Teor. Mat. Fiz. 148, 398–427 (2006)zbMATHGoogle Scholar
  12. 12.
    Feigin, B.L., Tipunin, I.Y.: Logarithmic CFTs connected with simple Lie algebras, preprint. arXiv:1002.5047 (2010)
  13. 13.
    Gauß, C.F.: Summatio quarumdam serierum singularium, comment. Soc. Reg. Sci. Gott. (1811). Available for example in Werke II, Georg Olms Verlag (1981)Google Scholar
  14. 14.
    Gainutdinov, A.M., Lentner, S.D., Ohrmann, T.: Modularization of small quantum groups, preprint. arXiv:1809.02116 (2018)
  15. 15.
    Garcia, G.A., Gavarini, F.: Multiparameter quantum groups at roots of unity, preprint. arXiv:1708.05760 (2017)
  16. 16.
    Geer, N., Patureau-Mirand, B.: The trace on projective representations of quantum groups. arXiv:1610.09129v1
  17. 17.
    Geer, N., Patureau-Mirand, B., Turaev, V.: Modified quantum dimensions and re-normalized link invariants. Compos. Math. 145, 196–212 (2009)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gainutdinov, A.M., Runkel, I.: Symplectic fermions and a quasi-Hopf algebra structure on \(\bar{U}^-_i(\mathfrak{sl}_2)\), preprint. arXiv:1503.07695 (2015)
  19. 19.
    Heckenberger, I.: Classification of arithmetic root systems. Adv. Math. 220(1), 59–124 (2009)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Heckenberger, I.: Lusztig isomorphisms for Drinfel’d doubles of bosonizations of Nichols algebras of diagonal type. J. Algebra 323(8), 2130–2182 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kondo, H., Saito, Y.: Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to \(\mathfrak{sl}_2\). J. Algebra 330(1), 103–129 (2011)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Lusztig, G.: Quantum groups at roots of 1. Geom. Ded. 35, 89–114 (1990)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lusztig, G.: Introduction to Quantum Groups, Progress in Mathematics 110. Birkhäuser, Basel (1993)Google Scholar
  24. 24.
    Lentner, S.: A Frobenius homomorphism for Lusztig’s quantum groups over arbitrary roots of unity. Commun. Contemp. Math. 18/3, 1550040 (2015)Google Scholar
  25. 25.
    Lentner, S.: Quantum groups and Nichols algebras acting on conformal quantum field theories, preprint. arXiv:1702.06431 (2017)
  26. 26.
    Lentner, S., Ohrmann, T.: Factorizable \(R\)-matrices for small quantum groups. SIGMA 13, 76 (2017)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Nagatomo, K., Tsuchiya, A.: The triplet vertex operator algebra \(W(p)\) and the restricted quantum group \(U_q(\mathfrak{sl}_2)\) at \(1=e^{\frac{\pi i}{p}}\). Adv. Stud. Pure Math. 61, 1–49 (2011). arXiv:0902.4607 zbMATHGoogle Scholar
  28. 28.
    Reshetikhin, N.: Quasitriangularity of quantum groups at roots of 1. Commun. Math. Phys. 170(1), 79–99 (1995)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Reshetikhin, N., Turaev, V.G.: Invariants of \(3\)-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Tanisaki, T.: Killing forms, Harish–Chandra homomorphisms and universal \(R\)-matrices for quantum algebras. Int. J. Mod. Phys. A 07(supp01b), 941–962 (1992)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Algebra and Number TheoryUniversity HamburgHamburgGermany

Personalised recommendations