Advertisement

Getzler relation and Virasoro conjecture for genus one

  • Yijie LinEmail author
Article
  • 14 Downloads

Abstract

We derive explicit universal equations for primary Gromov–Witten invariants by applying Getzler’s genus one relation to quantum powers of Euler vector field. As an application, we provide some evidences for the genus-1 Virasoro conjecture.

Keywords

Getzler’s genus one relation Virasoro conjecture Quantum product Gromov–Witten invariants 

Mathematics Subject Classification

14N35 

Notes

Acknowledgements

The author would like to thank Professor Xiaobo Liu for many helpful suggestions and Professor Jian Zhou for his encouragement.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Borisov, L.: On Betti numbers and Chern classes of varieties with trivial odd cohomology groups. arXiv:alg-geom/9703023v2
  2. 2.
    Cox, D., Katz, S.: Mirror Symmetry and Algebraic Geometry, Mathematical Surveys and Monographs, vol. 68. American Mathematical Society, Providence, RI (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dubrovin, B., Zhang, Y.: Frobenius manifolds and Virasoro constraints. Selecta Math. (N.S.) 5, 423–466 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dubrovin, B., Zhang, Y.: Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation. Commun. Math. Phys. 198, 311–361 (1998)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Eguchi, T., Hori, K., Xiong, C.: Quantum cohomology and Virasoro algebra. Phys. Lett. B. 402(1–2), 71–80 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Getzler, E.: The Virasoro Conjecture for Gromov–Witten Invariants, Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998). Contemporary Mathematics, vol. 241, pp. 147–176. Amer. Math. Soc., Providence, RI (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Getzler, E.: Intersection theory on \(\overline{{\cal{M}}}_{1,4}\) and elliptic Gromov–Witten invariants. J. Am. Math. Soc. 10(4), 973–998 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hertling, C., Manin, Y.: Weak Frobenius manifolds. Int. Math. Res. Not. 6, 277–286 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hori, K.: Constraints for topological strings in \(D\ge 1\). Nucl. Phys. B. 439(1–2), 395–420 (1995)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Keel, S.: Intersection theory of moduli space of stable \(n\)-pointed curves of genus zero. Trans. Am. Math. Soc. 330(2), 545–574 (1992)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, X., Tian, G.: Virasoro constraints for quantum cohomology. J. Differ. Geom. 50(3), 537–590 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, X.: Elliptic Gromov–Witten invariants and Virasoro conjecture. Commun. Math. Phys. 216, 705–728 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liu, X.: Genus-1 Virasoro Conjecture on the Small Phase Space, Symplectic Geometry and Mirror Symmetry (Seoul, 2000), pp. 265–279. World Sci. Publ., River Edge, NJ (2001)CrossRefGoogle Scholar
  15. 15.
    Liu, X.: Genus-1 Virasoro conjecture along quantum volume direction. Int. Math. Res. Not. 8, 1747–1760 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Liu, X.: Idempotents on the Big Phase Space, Gromov–Witten Theory of Spin Curves and Orbifolds. Contemporary Mathematics, vol. 403, pp. 43–66. Amer. Math. Soc., Providence, RI (2006)CrossRefGoogle Scholar
  17. 17.
    Liu, X.: Quantum product on the big phase space and Virasoro conjecture. Adv. Math. 169(2), 313–375 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Teleman, C.: The structure of 2D semi-simple field theories. Invent. Math. 188(3), 525–588 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Witten, E.: Two-dimensional gravity and intersection theory on moduli space. Surv. Differ. Geom. 1, 243–310 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mathematics (Zhuhai)Sun Yat-Sen UniversityZhuhaiChina

Personalised recommendations