Advertisement

Higher-order Hamiltonians for the trigonometric Gaudin model

  • Alexander MolevEmail author
  • Eric Ragoucy
Article
  • 13 Downloads

Abstract

We consider the trigonometric classical r-matrix for \(\mathfrak {gl}_N\) and the associated quantum Gaudin model. We produce higher Hamiltonians in an explicit form by applying the limit \(q\rightarrow 1\) to elements of the Bethe subalgebra for the XXZ model.

Keywords

Gaudin model Quantum affine algebra Bethe subalgebra 

Mathematics Subject Classification

81R50 17B37 

Notes

References

  1. 1.
    Babelon, O., Viallet, C.-M.: Hamiltonian structures and Lax equations. Phys. Lett. B 237, 411–416 (1990)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Baseilhac, P., Belliard, S., Crampé, N.: FRT presentation of the Onsager algebras. Lett. Math. Phys. 108, 2189–2212 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chervov, A., Falqui, G.: Manin matrices and Talalaev’s formula. J. Phys. A Math. Theor. 41, 194006 (2008). (28pp)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chervov, A., Falqui, G., Rubtsov, V., Silantyev, A.: Algebraic properties of Manin matrices II: \(q\)-analogues and integrable systems. Adv. Appl. Math. 60, 25–89 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chervov, A.V., Molev, A.I.: On higher order Sugawara operators. Int. Math. Res. Not. 9, 1612–1635 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Feigin, B., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras. Int. J. Mod. Phys. A 7(Suppl. 1A), 197–215 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feigin, B., Frenkel, E., Reshetikhin, N.: Gaudin model, Bethe ansatz and critical level. Commun. Math. Phys. 166, 27–62 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Frappat, L., Jing, N., Molev, A., Ragoucy, E.: Higher Sugawara operators for the quantum affine algebras of type \(A\). Commun. Math. Phys. 345, 631–657 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frenkel, E.: Langlands Correspondence for Loop Groups. Cambridge Studies in Advanced Mathematics, vol. 103. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  10. 10.
    Frenkel, I.B., Reshetikhin, NYu.: Quantum affine algebras and holonomic difference equations. Commun. Math. Phys. 146, 1–60 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jurčo, B.: Classical Yang–Baxter equations and quantum integrable systems. J. Math. Phys. 30, 1289–1293 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kožić, S., Molev, A.: Center of the quantum affine vertex algebra associated with trigonometric \(R\)-matrix. J. Phys. A Math. Theor. 50, 325201 (2017). (21pp)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Molev, A.: Sugawara Operators for Classical Lie Algebras. Mathematical Surveys and Monographs, vol. 229. AMS, Providence, RI (2018)zbMATHGoogle Scholar
  14. 14.
    Mukhin, E., Tarasov, V., Varchenko, A.: Bethe eigenvectors of higher transfer matrices. J. Stat. Mech. Theory Exp. 2006(8), P08002 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Reshetikhin, N.Yu., Semenov-Tian-Shansky, M.A.: Central extensions of quantum current groups. Lett. Math. Phys. 19, 133–142 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rimányi, R., Tarasov, V., Varchenko, A.: Trigonometric weight functions as \(K\)-theoretic stable envelope maps for the cotangent bundle of a flag variety. J. Geom. Phys. 94, 81–119 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sklyanin, E.K.: Separation of variables in the Gaudin model (Russian). Zap. Nauchn. Sem. LOMI 164, (1987), Differentsialnaya Geom. Gruppy Li i Mekh. IX, 151–169; English translation in J. Soviet Math. 47, 2473–2488 (1989)Google Scholar
  18. 18.
    Skrypnyk, T.: Quantum integrable systems, non-skew-symmetric \(r\)-matrices and algebraic Bethe ansatz. J. Math. Phys. 48(2), 023506 (2007). 14 pp.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Talalaev, D.V.: The quantum Gaudin system. Funct. Anal. Appl. 40, 73–77 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of SydneySydneyAustralia
  2. 2.Laboratoire de Physique Théorique LAPThCNRS and Université de SavoieAnnecy-le-Vieux CedexFrance

Personalised recommendations