Letters in Mathematical Physics

, Volume 109, Issue 7, pp 1559–1572 | Cite as

The spectrum of permutation orbifolds

  • Christoph A. KellerEmail author
  • Beatrix J. Mühlmann


We study the spectrum of permutation orbifolds of 2d CFTs. We find examples where the light spectrum grows faster than Hagedorn, which is different from known cases such as symmetric orbifolds. We also describe how to compute their partition functions using a generalization of Hecke operators.


Conformal field theory Holography Orbifolds Permutation groups 

Mathematics Subject Classification

17B69 81T40 05A16 



This work is partly based on the master thesis of one of us (BJM). CAK thanks the Harvard University High Energy Theory Group for hospitality. This work was performed in part at Aspen Center for Physics, which is supported by National Science Foundation Grant PHY-1607611. CAK is supported by the Swiss National Science Foundation through the NCCR SwissMAP.


  1. 1.
    Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B 379, 99–104 (1996). arXiv:hep-th/9601029 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Keller, C.A.: Phase transitions in symmetric orbifold CFTs and universality. JHEP 1103, 114 (2011). arXiv:1101.4937 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hartman, T., Keller, C.A., Stoica, B.: Universal spectrum of 2d conformal field theory in the large c limit. JHEP 09, 118 (2014). arXiv:1405.5137 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Haehl, F.M., Rangamani, M.: Permutation orbifolds and holography. JHEP 03, 163 (2015). arXiv:1412.2759 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Belin, A., Keller, C .A., Maloney, A.: String universality for permutation orbifolds. Phys. Rev. D91(10), 106005 (2015). arXiv:1412.7159 [hep-th]MathSciNetGoogle Scholar
  6. 6.
    Belin, A., Keller, C.A., Maloney, A.: Permutation orbifolds in the large N limit. Ann. Henri Poincare 18, 1–29 (2016). arXiv:1509.01256 [hep-th]MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bantay, P.: Characters and modular properties of permutation orbifolds. Phys. Lett. B 419, 175–178 (1998). arXiv:hep-th/9708120 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cameron, P.J.: Oligomorphic Permutation Groups. London Mathematical Society Lecture Note Series, vol. 152. Cambridge University Press, Cambridge (1990). CrossRefGoogle Scholar
  9. 9.
    Cameron, P.J., Gewurz, D.A., Merola, F.: Product action. Discrete Math. 308(2–3), 386–394 (2008). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cameron, P.J.: Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  11. 11.
    Wilf, H .S.: Generatingfunctionology, 3rd edn. A K Peters, Ltd., Wellesley (2006)zbMATHGoogle Scholar
  12. 12.
    de Bruijn, N .G.: Asymptotic Methods in Analysis, 3rd edn. Dover Publications, Inc., New York (1981)zbMATHGoogle Scholar
  13. 13.
    Pittel, B.: Where the typical set partitions meet and join. Electron. J. Comb. 7(1). Research paper R5, 15 p. (2000)
  14. 14.
    Dijkgraaf, R., Moore, G.W., Verlinde, E.P., Verlinde, H.L.: Elliptic genera of symmetric products and second quantized strings. Commun. Math. Phys. 185, 197–209 (1997). arXiv:hep-th/9608096 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Klemm, A., Schmidt, M.G.: Orbifolds by cyclic permutations of tensor product conformal field theories. Phys. Lett. B 245, 53–58 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsETH ZurichZurichSwitzerland
  2. 2.Department of PhysicsETH ZurichZurichSwitzerland

Personalised recommendations