Advertisement

Letters in Mathematical Physics

, Volume 109, Issue 7, pp 1573–1610 | Cite as

Classification of screening systems for lattice vertex operator algebras

  • Katrina BarronEmail author
  • Nathan Vander Werf
Article
  • 16 Downloads

Abstract

We study and classify systems of certain screening operators arising in a generalized vertex operator algebra, or more generally an abelian intertwining algebra with an associated vertex operator (super)algebra. Screening pairs arising from weight one primary vectors acting commutatively on a lattice vertex operator algebra (the vacuum module) are classified into four general types; one type of which has been shown to play an important role in the construction and study of certain important families of \({\mathcal {W}}\)-vertex algebras. These types of screening pairs which we go on to study in detail through the notion of a system of screeners are lattice elements or “screening momenta” which give rise to screening pairs. We classify screening systems for all positive definite integral lattices of rank two, and for all positive definite even lattices of arbitrary rank when these lattices are generated by a screening system.

Keywords

Vertex operator algebras Conformal field theory Screening operators 

Mathematics Subject Classification

Primary 17B69 Secondary 81T40 17B68 17B22 

Notes

Acknowledgements

This paper consists, essentially, of the first three chapters of the second author’s Ph.D. Thesis [56] under the supervision of the first author. The authors would like to thank Antun Milas, Drazan Adamovic, and Jinwei Yang for useful comments and guidance in the writing of the thesis from which this paper is derived. The authors thank the referee for pointing out significant points of clarification in the expository parts of the paper as well as some mathematical improvements. The first author is the recipient of Simons Foundation Collaboration Grant 282095, and greatly appreciates their support.

References

  1. 1.
    Abe, T.: A \({\mathbb{Z}}_2\)-orbifold model of the symplectic fermionic vertex operator superalgebra. Math. Z. 255, 755–792 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adamović, D., Milas, A.: \(C_2\)-Cofinite \({\cal{W}}\)-algebras and their logarithmic representations. In: Conformal Field Theories, and Tensor Categories. Mathematical Lectures from Peking University, Springer, Heidelberg pp. 249–270 (2014)Google Scholar
  3. 3.
    Adamović, D., Milas, A.: The doublet vertex operator algebra \({\cal{A}}(p)\) and \({\cal{A}}_{2, p}\). In: Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory, Contemporary Mathematics 602, American Mathematical Society, Providence, RI pp. 23–38 (2013)Google Scholar
  4. 4.
    Adamović, D.: Classification of irreducible modules of certain subalgebras of free boson vertex algebra. J. Algebra 270, 115–132 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Adamović, D., Milas, A.: Logarithmic intertwining operators and \({\cal{W}}(2,2p-1)\)-algebras. J. Math. Phys. 48, 073503 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Adamović, D., Milas, A.: On the triplet vertex algebra \(W(p)\). Adv. Math. 217, 2664–2699 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Adamović, D., Milas, A.: Lattice construction of logarithmic modules for certain vertex algebras. Sel. Math. (N.S.) 15, 535–561 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Adamović, D., Milas, A.: The \(N=1\) triplet vertex operator superalgebras. Commun. Math. Phys. 288, 225–270 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Adamović, D., Milas, A.: On \(W\)-algebras associated to \((2, p)\) minimal models and their representations. Int. Math. Res. Not. 20, 3896–3934 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Adamović, D., Milas, A.: The structure of Zhu’s algebras for certain \({{\cal{W}}}\)-algebras. Adv. Math. 227, 2425–2456 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Adamović, D., Milas, A.: On \(W\)-algebra extensions of \((2, p)\) minimal models: \(p > 3\). J. Algebra 344, 313–332 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Adamović, D., Milas, A.: An explicit realization of logarithmic modules for the vertex operator algebra \({\cal{W}}_{p, p^{\prime }}\). J. Math. Phys. 53, 16 (2012)zbMATHGoogle Scholar
  13. 13.
    Barron, K., Vander Werf, N., Yang, J.: Higher level Zhu algebras and modules for vertex operator algebras. J. Pure Appl. Algebra (to appear)Google Scholar
  14. 14.
    Barron, K., Vander Werf, N.: Classification of irreducible modules for the kernel of a screening operator for rank 2 lattice vertex operator algebras (in preparation)Google Scholar
  15. 15.
    Barron, K., Vander Werf, N.: On permutation-twisted free fermion vertex operator superalgebras and two conjectures, In: C. Burdik, O., Navratil, Posta, S. (eds.) Proceedings of the XXIst International Conference on Integrable Systems and Quantum Symmetries, June 2013, Prague, Czech Republic; J. Physics: Conference Series474, 012009 (2013)Google Scholar
  16. 16.
    Creutzig, T., Gaĭnutdinov, A., Runkel, I.: A quasi-Hopf algebra for the triple vertex operator algebras. arXiv:1712.072601v1
  17. 17.
    de Boer, J., Tjin, T.: Quantization and representation theory of finite \({\cal{W}}\)-algebras. Commun. Math. Phys. 158, 485516 (1993)MathSciNetGoogle Scholar
  18. 18.
    Dong, C., Lepowsky, J.: A generalization of vertex operator algebra. In: Haboush, W., Parshall, B. (eds.) Algebraic Groups and Generalizatons, Proceedings of 1991 American Mathematical Society Summer Research Institute. Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence (1993)Google Scholar
  19. 19.
    Dong, C., Lepowsky, J.: Generalized vertex algebras and relative vertex operators. In: Progress in Mathematics, vol. 112. Birkhaüser, Boston (1993)Google Scholar
  20. 20.
    Dong, C.: Vertex algebras associated with even lattices. J. Algebra 161(1), 245–265 (1993).  https://doi.org/10.1006/jabr.1993.1217 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dong, C., Li, H., Mason, G.: Vertex operator algebras and associative algebras. J. Algebra 206, 67–96 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dotesenko, V., Fateev, V.: Conformal algebra and multipoint correlation functions in two-dimensional statistical models. Nucl. Phys. B 240, 312 (1984)CrossRefGoogle Scholar
  23. 23.
    Dotesenko, V., Fateev, V.: Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with central charge \(c<1\). Nucl. Phys. B 251, 691 (1985)CrossRefGoogle Scholar
  24. 24.
    Ebeling, W.: Lattices and Codes. Lecture Notes in Mathematics, 2nd edn. Friedr. Vieweg & Sohn, Braunschweig (2002)CrossRefzbMATHGoogle Scholar
  25. 25.
    Eholzer, W., Flohr, M., Honecker, A., Hübel, R., Nahm, W., Varnhagen, R.: Representations of \({{\cal{W}}}\)-algebras with two generators and new rational models. Nucl. Phys. B 383, 249–288 (1992)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Feigin, B., Tipunin, I. Yu.: Logarithmic CFTs connected with simple Lie algebras. arXiv:1002.5047
  27. 27.
    Feigin, B., Frenkel, E.: A family of representations of affine Lie algebras (Russian). Uspekhi Mat. Nauk 43, 227–228 (1988). translation in Russian Math. Surveys 43 (1988), 221–222Google Scholar
  28. 28.
    Feigin, B., Gaĭnutdinov, A., Semikhatov, A., Tipunin, I. Yu.: The Kazhdan-Lusztig correspondence for the representation category of the triplet \(W\)-algebra in logarithmic conformal field theories. Theoret. Math. Phys. 148, 1210–1235 (2006)Google Scholar
  29. 29.
    Feigin, B., Gaĭnutdinov, A., Semikhatov, A., Tipunin, I. Yu.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B 757, 303–343 (2006)Google Scholar
  30. 30.
    Feigin, B., Gaĭnutdinov, A., Semikhatov, A., Tipunin, I. Yu.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys. 265, 47–93 (2006)Google Scholar
  31. 31.
    Felder, G.: BRST approach to minimal models. Nucl. Phys. B 317, 215–236 (1989)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Fjelstad, J., Fuchs, J., Hwang, S., Semikhatov, A., Tipunin, I. Yu.: Logarithmic conformal field theories via logarithmic deformations. Nucl. Phys. B 633, 379–413 (2002)Google Scholar
  33. 33.
    Flohr, M.: Bits and pieces in logarithmic conformal field theory. In: Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and its Applications (Tehran, 2001). Int. J. Modern Phys. A 18, 4497–4591 (2003)Google Scholar
  34. 34.
    Flohr, M.: On modular invariant partition functions of conformal field theories with logarithmic operators. Int. J. Modern Phys. A 11, 4147–4172 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Flohr, M., Gaberdiel, M.: Logarithmic torus amplitudes. J. Phys. A 39, 1955–1967 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, 88. American Mathematical Society, Providence, RI (2001)zbMATHGoogle Scholar
  37. 37.
    Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Mathematics. Academic Press, Cambridge (1988)zbMATHGoogle Scholar
  38. 38.
    Fuchs, J., Hwang, S., Semikhatov, A., Tipunin, I. Yu.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247, 713–742 (2004)Google Scholar
  39. 39.
    Gaberdiel, M.: An algebraic approach to logarithmic conformal field theory. In: Proceedings of the School and Workshop on Logarithmic Conformal Field Theory and its Applications (Tehran, 2001). Int. J. Modern Phys. A 18, 4593–4638 (2003)Google Scholar
  40. 40.
    Gaberdiel, M., Kausch, H.: A rational logarithmic conformal field theory. Phys. Lett. B 386, 131–137 (1996)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Gaberdiel, M., Kausch, H.: A local logarithmic conformal field theory. Nucl. Phys. B 538, 631–658 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Gaberdiel, M., Runkel, I.: The logarithmic triplet theory with boundary. J. Phys. A 39, 14745–14780 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1972)CrossRefzbMATHGoogle Scholar
  44. 44.
    Kausch, H.: Extended conformal algebras generated by multiplet of primary fields. Phys. Lett. B 259, 448–455 (1991)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Kausch, H.: Symplectic fermions. Nucl. Phys. B 583, 513–541 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Kausch, H., Watts, G.: A study of \({{\cal{W}}}\)-algebras by using Jacobi identities. Nucl. Phys. B 354, 740–768 (1991)CrossRefGoogle Scholar
  47. 47.
    Lentner, S.: Quantum groups and Nichols algebras acting on conformal field theories. arXiv:1702.06431v1
  48. 48.
    Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations. Progress in Mathematics, vol. 227. Birkhäuser, Boston (2003)zbMATHGoogle Scholar
  49. 49.
    Li, W.: Abelian intertwining algebras and modules related to rational lattices. J. Algebra 214, 356–384 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Mac Lane, S.: Coholmology theory of abelian groups. In: Proceedings of International Congress of Mathematicians, Vol. II, 8–14 (1950)Google Scholar
  51. 51.
    Miyamoto, M.: Modular invariance of vertex operator algebras satisfying \(C_2\)-cofiniteness. Duke Math. J. 122, 51–91 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Nagatomo, K., Tsuchiya, A.: The triplet vertex operator algebra \({\cal{W}}(p)\) and the restricted quantum group at root of unity. In: Exploring New Structures and Natural Constructions in Mathematical Physics. 149, Advanced Studies in Pure Mathematics, vol. 61, Mathematics Society Japan, Tokyo (2011)Google Scholar
  53. 53.
    Newman, M.: Integral Matrices. Academic Press, New York (1972)zbMATHGoogle Scholar
  54. 54.
    Tsuchiya, A., Wood, S.: The tensor structure on the representation category of the triplet algebra. J. Phys. A 46, 40 (2013)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Tsuchiya, A., Wood, S.: On the extended \(W\)-algebra of type \({\mathfrak{sl}}_2\) at positive rational level. Int. Math. Res. Not. 2015, 5357–5435 (2015)CrossRefzbMATHGoogle Scholar
  56. 56.
    Vander Werf, N.: Screening Operators for Lattice Vertex Operator Algebras and Resulting Constructions. University of Notre Dame, Notre Dame (2017)Google Scholar
  57. 57.
    Wakimoto, M.: Fock representations of affine Lie algebra \(A^{(1)}_1\). Commun. Math. Phys. 104, 605–609 (1986)CrossRefzbMATHGoogle Scholar
  58. 58.
    Wang, W.: Nilpotent orbits and finite \(W\)-algebras. Fields Inst. Commun. 59, 71–105 (2011)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Xu, X.: Introduction to Vertex Operator Superalgebras and Their Modules, vol. 456. Kluwer Academic Publishers, Boston (1998)CrossRefzbMATHGoogle Scholar
  60. 60.
    Zhu, Y.-C.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–302 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA
  2. 2.Department of MathematicsUniversity of Nebraska at KearneyKearneyUSA

Personalised recommendations