Advertisement

Asymptotic properties of the Hitchin–Witten connection

  • J. E. AndersenEmail author
  • Alessandro Malusà
Article
  • 34 Downloads

Abstract

We explore extensions to \({{\,\mathrm{SL}\,}}(n,{\mathbb {C}})\)-Chern–Simons theory of some results obtained for \({{\,\mathrm{SU}\,}}(n)\)-Chern–Simons theory via the asymptotic properties of the Hitchin connection and its relation to Toeplitz operators developed previously by the first named author. We define a formal Hitchin–Witten connection for the imaginary part s of the quantum parameter \(t = k+is\) and investigate the existence of a formal trivialisation. After reducing the problem to a recursive system of differential equations, we identify a cohomological obstruction to the existence of a solution. We explicitly provide one for the first step in the specific case of an operator of order zero, and show in general the vanishing of a weakened version of the obstruction. We also provide a solution for the whole recursion in the case of a surface of genus one.

Keywords

Complex Chern-Simons theory Geometric quantisation Formal Hitchin-Witten connection 

Mathematics Subject Classification

53D50 57R56 81S10 

References

  1. 1.
    Andersen, J.E.: Deformation quantization and geometric quantization of abelian moduli spaces. Commun. Math. Phys. 255(3), 727–745 (2005).  https://doi.org/10.1007/s00220-004-1244-y ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Andersen, J.E.: Asymptotic faithfulness of the quantum \({\rm SU}(n)\) representations of the mapping class groups. Ann. Math. 163(1), 347–368 (2006).  https://doi.org/10.4007/annals.2006.163.347 MathSciNetzbMATHGoogle Scholar
  3. 3.
    Andersen, J.E.: Asymptotics of the Hilbert–Schmidt norm of curve operators in TQFT. Lett. Math. Phys. 91(3), 205–214 (2010).  https://doi.org/10.1007/s11005-009-0368-6 ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Andersen, J.E.: Hitchin’s connection, Toeplitz operators and symmetry invariant deformation quantization. Quantum Topol. 3, 293–325 (2012).  https://doi.org/10.4171/QT/30 MathSciNetzbMATHGoogle Scholar
  5. 5.
    Andersen, J.E., Gammelgaard, N.L.: Hitchin’s projectively flat connection, Toeplitz operators and the asymptotic expansion of TQFT curve operators. In: Grassmannians, Moduli Spaces and Vector Bundles, Clay Mathematics Proceedings, vol. 14, pp. 1–24. American Mathematical Society, Providence (2011)Google Scholar
  6. 6.
    Andersen, J.E., Gammelgaard, N.L.: The Hitchin–Witten connection and complex quantum Chern–Simons theory. arXiv:1409.1035 (2014)
  7. 7.
    Andersen, J.E., Gammelgaard, N.L., Lauridsen, M.R.: Hitchin’s connection in metaplectic quantization. Quantum Topol. 3, 327–357 (2012).  https://doi.org/10.4171/QT/31 MathSciNetzbMATHGoogle Scholar
  8. 8.
    Andersen, J.E., Kashaev, R.: A TQFT from quantum Teichmüller theory. Commun. Math. Phys. 330(3), 887–934 (2014).  https://doi.org/10.1007/s00220-014-2073-2 ADSzbMATHGoogle Scholar
  9. 9.
    Andersen, J.E., Kashaev, R.: The Teichmüller TQFT. In: Sirakov B., de Souza P.N., Viana M. (eds.) Proceedings of the International Congress of Mathematicians 2018 (ICM 2018), vol. 2, pp. 2527–2552. World Scientific Publishing, River Edge (2018)Google Scholar
  10. 10.
    Andersen, J.E., Malusà, A.: The AJ-conjecture for the Teichmüller TQFT. arXiv:1711.11522 [math] (2017)
  11. 11.
    Andersen, J.E., Marzioni, S.: Level N Teichmüller TQFT and complex Chern–Simons theory. Trav. Math. 25, 97–146 (2016)zbMATHGoogle Scholar
  12. 12.
    Andersen, J.E., Masulli, P., Schätz, F.: Formal connections for families of star products. Commun. Math. Phys. 342(2), 739–768 (2016)ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Andersen, J.E., Ueno, K.: Geometric construction of modular functors from conformal field theory. J. Knot Theory Ramif. 16(02), 127–202 (2007).  https://doi.org/10.1142/S0218216507005233 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Andersen, J.E., Ueno, K.: Abelian conformal field theory and determinant bundles. Int. J. Math. 18(08), 919–993 (2007).  https://doi.org/10.1142/S0129167X07004369 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Andersen, J.E., Ueno, K.: Modular functors are determined by their genus zero data. Quantum Topol. 3(3), 255–291 (2012).  https://doi.org/10.4171/QT/29 MathSciNetzbMATHGoogle Scholar
  16. 16.
    Andersen, J.E., Ueno, K.: Construction of the Witten–Reshetikhin–Turaev TQFT from conformal field theory. Invent. Math. 201(2), 519–559 (2015).  https://doi.org/10.1007/s00222-014-0555-7 ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Axelrod, S., Della Pietra, S., Witten, E.: Geometric quantization of Chern–Simons gauge theory. J. Differ. Geom. 33(3), 787–902 (1991)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds and \(\rm Gl(N)\), \(N \rightarrow \infty \) limits. Commun. Math. Phys. 165(2), 281–296 (1994)ADSzbMATHGoogle Scholar
  19. 19.
    Freed, D.S.: Classical Chern-Simons theory. I. Adv. Math. 113(2), 237–303 (1995).  https://doi.org/10.1006/aima.1995.1039 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Garoufalidis, S.: On the characteristic and deformation varieties of a knot. In: Proceedings of the Casson Fest, Geometry and Topology Monograph, vol. 7, pp. 291–309 (electronic). Geometry and Topology Publishers, Coventry (2004).  https://doi.org/10.2140/gtm.2004.7.291
  21. 21.
    Gukov, S.: Three-dimensional quantum gravity, Chern–Simons theory, and the A-polynomial. Commun. Math. Phys. 255(3), 577–627 (2005).  https://doi.org/10.1007/s00220-005-1312-y ADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    Hitchin, N.J.: Flat connections and geometric quantization. Commun. Math. Phys. 131(2), 347–380 (1990).  https://doi.org/10.1007/BF02161419 ADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    Karabegov, A.V., Schlichenmaier, M.: Identification of Berezin–Toeplitz deformation quantization. Journal für die reine und angewandte Mathematik Crelles Journal 2001(540), 26 (2001)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Laszlo, Y.: Hitchin’s and WZW connections are the same. J. Differ. Geom. 49(3), 547–576 (1998).  https://doi.org/10.4310/jdg/1214461110 MathSciNetzbMATHGoogle Scholar
  25. 25.
    Malusà, A.: Geometric quantisation, the Hitchin–Witten connection, and quantum operators in complex Chern–Simons theory. Ph.D. thesis, Aarhus University—QGM (2018)Google Scholar
  26. 26.
    Reshetikhin, N., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(3), 547–598 (1991)ADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Reshetikhin, N.Y., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127(1), 1–26 (1990)ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    Schlichenmaier, M.: Zwei Anwendungen algebraisch-geometrischer Methoden in der Physik: Berezin–Toeplitz quanisierung und globale Algebren der konformen Feldtheorie, Habilitationsschrift. Ph.D. thesis, University of Mannheim, Mannheim, Germany (1996)Google Scholar
  29. 29.
    Schlichenmaier, M.: Berezin–Toeplitz quantization of compact Kähler manifolds. In: Strasburger, A., Ali, S.T., Antoine, J.-P., Gazeau, J.-P. , Odzijewicz, A. (eds.) Quantization. Coherent States, and Poisson Structures. Proceedings of the 14th Workshop on Geometric Methods in Physics held in Białowieża, July 9–15, 1995 (Białowieża, 1995), pp. 101–115. PWN, Warsaw (1998)Google Scholar
  30. 30.
    Schlichenmaier, M.: Deformation quantization of compact Kähler manifolds by Berezin–Toeplitz quantization. In: Conférence Moshé Flato 1999, vol. II (Dijon). Mathematical Physics Studies, vol. 22, pp. 289–306. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  31. 31.
    Schlichenmaier, M.: Berezin–Toeplitz quantization and Berezin transform. In: Graffi, S., Martinez, A. (eds.) Long Time Behaviour of Classical and Quantum Systems (Bologna, 1999). Series on Concrete Applicable Mathematics, vol. 1, pp. 271–287. World Scientific Publishing, River Edge (2001)Google Scholar
  32. 32.
    Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. De Gruyter Studies in Mathematics, vol. 18, 2nd edn. De Gruyter, Berlin (2010)zbMATHGoogle Scholar
  33. 33.
    Wells, R.O.: Differential Analysis on Complex Manifolds. Graduate Texts in Mathematics, vol. 65, 3rd edn. Springer, Berlin (2008)zbMATHGoogle Scholar
  34. 34.
    Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989).  https://doi.org/10.1007/BF01217730 ADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    Witten, E.: Quantization of Chern–Simons gauge theory with complex gauge group. Commun. Math. Phys. 66, 29–66 (1991)ADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Woodhouse, N.M.J.: Geometric Quantization. Oxford Mathematical Monographs, 2nd edn. The Clarendon Press, New York (1992)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Center for Quantum Geometry of Moduli SpacesAarhus UniversityAarhus CDenmark
  2. 2.Department of Mathematics and StatisticsUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations