Advertisement

Letters in Mathematical Physics

, Volume 109, Issue 3, pp 449–495 | Cite as

Punctures and dynamical systems

  • Falk HasslerEmail author
  • Jonathan J. Heckman
Article

Abstract

With the aim of better understanding the class of 4D theories generated by compactifications of 6D superconformal field theories (SCFTs), we study the structure of \(\mathcal {N}=1\) supersymmetric punctures for class \(\mathcal {S}_{\varGamma }\) theories, namely the 6D SCFTs obtained from M5-branes probing an ADE singularity. For M5-branes probing a \(\mathbb {C}^2 / \mathbb {Z}_{k}\) singularity, the punctures are governed by a dynamical system in which evolution in time corresponds to motion to a neighboring node in an affine A-type quiver. Classification of punctures reduces to determining consistent initial conditions which produce periodic orbits. The study of this system is particularly tractable in the case of a single M5-brane. Even in this “simple” case, the solutions exhibit a remarkable level of complexity: Only specific rational values for the initial momenta lead to periodic orbits and small perturbations in these values lead to vastly different late-time behavior. Another difference from half BPS punctures of class \(\mathcal {S}\) theories includes the appearance of a continuous complex “zero mode” modulus in some puncture solutions. The construction of punctures with higher-order poles involves a related set of recursion relations. The resulting structures also generalize to systems with multiple M5-branes as well as probes of D- and E-type orbifold singularities.

Keywords

6D SCFTs Punctures Dynamical systems 4D SCFTs 

Mathematics Subject Classification

37N20 17B08 

Notes

Acknowledgements

We thank F. Apruzzi, J. Marincel, N. Miller and T. Rudelius for helpful discussions. JJH thanks the 2017 Summer Workshop at the Simons Center for Geometry and Physics as well as the Aspen Center for Physics Winter Conference in 2017 on Superconformal Field Theories in \(d\ge 4\), NSF Grant PHY-1066293, for hospitality during part of this work. The work of FH and JJH is supported by NSF CAREER Grant PHY-1756996. The work of FH is also supported by NSF Grant PHY-1620311.

References

  1. 1.
    Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B 443, 85–126 (1995). arXiv:hep-th/9503124 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Witten, E.: Some comments on string dynamics. In: Future Perspectives in String Theory. Proceedings, Conference, Strings’95, Los Angeles, USA, March 13–18, 1995 (1995). arXiv:hep-th/9507121
  3. 3.
    Strominger, A.: Open p-branes. Phys. Lett. B 383, 44–47 (1996). arXiv:hep-th/9512059 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Seiberg, N.: Nontrivial fixed points of the renormalization group in six-dimensions. Phys. Lett. B 390, 169–171 (1997). arXiv:hep-th/9609161 ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Witten, E.: Small instantons in string theory. Nucl. Phys. B 460, 541–559 (1996). arXiv:hep-th/9511030 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ganor, O.J., Hanany, A.: Small \(E_8\) instantons and tensionless noncritical strings. Nucl. Phys. B 474, 122–140 (1996). arXiv:hep-th/9602120 ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Morrison, D.R., Vafa, C.: Compactifications of F-theory on Calabi–Yau threefolds—II. Nucl. Phys. B 476, 437–469 (1996). arXiv:hep-th/9603161 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Seiberg, N., Witten, E.: Comments on string dynamics in six-dimensions. Nucl. Phys. B 471, 121–134 (1996). arXiv:hep-th/9603003 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bershadsky, M., Johansen, A.: Colliding Singularities in F-theory and Phase Transitions. Nucl. Phys. B 489, 122–138 (1997). arXiv:hep-th/9610111 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brunner, I., Karch, A.: Branes at orbifolds versus Hanany Witten in six-dimensions. JHEP 03, 003 (1998). arXiv:hep-th/9712143 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Blum, J.D., Intriligator, K.A.: Consistency conditions for branes at orbifold singularities. Nucl. Phys. B 506, 223–235 (1997). arXiv:hep-th/9705030 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Aspinwall, P.S., Morrison, D.R.: Point-like instantons on K3 orbifolds. Nucl. Phys. B 503, 533–564 (1997). arXiv:hep-th/9705104 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Intriligator, K.A.: New string theories in six-dimensions via branes at orbifold singularities. Adv. Theor. Math. Phys. 1, 271–282 (1998). arXiv:hep-th/9708117 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hanany, A., Zaffaroni, A.: Branes and six-dimensional supersymmetric theories. Nucl. Phys. B 529, 180–206 (1998). arXiv:hep-th/9712145 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Heckman, J.J., Morrison, D.R., Vafa, C.: On the Classification of 6D SCFTs and Generalized ADE Orbifolds. JHEP 05, 028 (2014). arXiv:1312.5746 [hep-th]. [Erratum: JHEP 06 (2015) 017]ADSCrossRefGoogle Scholar
  16. 16.
    Gaiotto, D., Tomasiello, A.: Holography for (1,0) theories in six dimensions. JHEP 12, 003 (2014). arXiv:1404.0711 [hep-th]ADSCrossRefGoogle Scholar
  17. 17.
    Del Zotto, M., Heckman, J.J., Tomasiello, A., Vafa, C.: 6D conformal matter. JHEP 02, 054 (2015). arXiv:1407.6359 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Del Zotto, M., Heckman, J.J., Morrison, D.R., Park, D.S.: 6D SCFTs and gravity. JHEP 06, 158 (2015). arXiv:1412.6526 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Heckman, J.J., Morrison, D.R., Rudelius, T., Vafa, C.: Atomic classification of 6D SCFTs. Fortsch. Phys. 63, 468–530 (2015). arXiv:1502.05405 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Bhardwaj, L.: Classification of 6D \( \cal{N}=\left(1,0\right) \) Gauge theories. JHEP 11, 002 (2015). arXiv:1502.06594 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Chang, C.-M., Lin, Y.-H.: Carving out the end of the world or (superconformal bootstrap in six dimensions). JHEP 08, 128 (2017). arXiv:1705.05392 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Apruzzi, F., Fazzi, M., Rosa, D., Tomasiello, A.: All \(AdS_7\) solutions of type II supergravity. JHEP 04, 064 (2014). arXiv:1309.2949 [hep-th]ADSCrossRefGoogle Scholar
  23. 23.
    Heckman, J.J.: More on the matter of 6D SCFTs. Phys. Lett. B 747, 73–75 (2015). arXiv:1408.0006 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Del Zotto, M., Heckman, J.J., Park, D.S., Rudelius, T.: On the defect group of a 6D SCFT. Lett. Math. Phys. 106(6), 765–786 (2016). arXiv:1503.04806 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gaiotto, D., Razamat, S.S.: \( \cal{N}=1 \) theories of class \( {\cal{S}}_k \). JHEP 07, 073 (2015). arXiv:1503.05159 [hep-th]ADSCrossRefGoogle Scholar
  26. 26.
    Ohmori, K., Shimizu, H., Tachikawa, Y., Yonekura, K.: 6d \({\cal{N}}=(1,0)\) theories on \(T^2\) and class S theories: Part I. JHEP 07, 014 (2015). arXiv:1503.06217 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Franco, S., Hayashi, H., Uranga, A.: Charting class \(\cal{S}_k\) territory. Phys. Rev. D 92(4), 045004 (2015). arXiv:1504.05988 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Del Zotto, M., Vafa, C., Xie, D.: Geometric engineering, mirror symmetry and \( 6{\text{ d }_{\left(1,0\right)}\rightarrow 4\text{ d }}_{\left(\cal{N}=2\right)} \). JHEP 11, 123 (2015). arXiv:1504.08348 [hep-th]ADSCrossRefGoogle Scholar
  29. 29.
    Heckman, J.J., Morrison, D.R., Rudelius, T., Vafa, C.: Geometry of 6D RG flows. JHEP 09, 052 (2015). arXiv:1505.00009 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Cordova, C., Dumitrescu, T.T., Intriligator, K.: Anomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theories. JHEP 10, 080 (2016). arXiv:1506.03807 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Hanany, A., Maruyoshi, K.: Chiral theories of class \( \cal{S} \). JHEP 12, 080 (2015). arXiv:1505.05053 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    Aganagic, M., Haouzi, N.: ADE little string theory on a Riemann surface (and triality). arXiv:1506.04183 [hep-th]
  33. 33.
    Louis, J., Lüst, S.: Supersymmetric AdS\(_{7}\) backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs. JHEP 10, 120 (2015). arXiv:1506.08040 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Ohmori, K., Shimizu, H., Tachikawa, Y., Yonekura, K.: 6D \(\cal{N}=\left(1,\;0\right) \) theories on S\(^{1}\) /T\(^{2}\) and class S theories: part II. JHEP 12, 131 (2015). arXiv:1508.00915 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    Coman, I., Pomoni, E., Taki, M., Yagi, F.: Spectral curves of \(\cal{N}=1\) theories of class \(\cal{S}_k\). arXiv:1512.06079 [hep-th]
  36. 36.
    Cremonesi, S., Tomasiello, A.: 6D holographic anomaly match as a continuum limit. JHEP 05, 031 (2016). arXiv:1512.02225 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Heckman, J.J., Rudelius, T., Tomasiello, A.: 6D RG flows and nilpotent hierarchies. JHEP 07, 082 (2016). arXiv:1601.04078 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Cordova, C., Dumitrescu, T.T., Intriligator, K.: Deformations of superconformal theories. JHEP 11, 135 (2016). arXiv:1602.01217 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Morrison, D.R., Vafa, C.: F-theory and \(\cal{N} = 1\) SCFTs in four dimensions. arXiv:1604.03560 [hep-th]
  40. 40.
    Heckman, J.J., Jefferson, P., Rudelius, T., Vafa, C.: Punctures for theories of class \(\cal{S}_\Gamma \). JHEP 03, 171 (2017). arXiv:1609.01281 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Cordova, C., Dumitrescu, T.T., Intriligator, K.: Multiplets of superconformal symmetry in diverse dimensions. arXiv:1612.00809 [hep-th]
  42. 42.
    Kim, H.-C., Kim, S., Park, J.: 6D strings from new chiral gauge theories. arXiv:1608.03919 [hep-th]
  43. 43.
    Shimizu, H., Tachikawa, Y.: Anomaly of strings of 6D \( \cal{N}=\left(1,0\right) \) theories. JHEP 11, 165 (2016). arXiv:1608.05894 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Mekareeya, N., Rudelius, T., Tomasiello, A.: T-branes, anomalies and moduli spaces in 6D SCFTs. arXiv:1612.06399 [hep-th]
  45. 45.
    Del Zotto, M., Lockhart, G.: On exceptional instanton strings. JHEP 09, 081 (2017). arXiv:1609.00310 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Apruzzi, F., Hassler, F., Heckman, J.J., Melnikov, I.V.: From 6D SCFTs to dynamic GLSMs. arXiv:1610.00718 [hep-th]
  47. 47.
    Razamat, S.S., Vafa, C., Zafrir, G.: 4D \( \cal{N}=1 \) from 6D (1, 0). JHEP 04, 064 (2017). arXiv:1610.09178 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Bah, I., Hanany, A., Maruyoshi, K., Razamat, S.S., Tachikawa, Y., Zafrir, G.: 4D \( \cal{N}=1 \) from 6D \( \cal{N}=\left(1,0\right) \) on a torus with fluxes. JHEP 06, 022 (2017). arXiv:1702.04740 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Mitev, V., Pomoni, E.: 2D CFT blocks for the 4D class \(\cal{S}_k\) theories. JHEP 08, 009 (2017). arXiv:1703.00736 [hep-th]ADSCrossRefzbMATHGoogle Scholar
  50. 50.
    Bah, I., Passias, A., Tomasiello, A.: \(AdS_5\) compactifications with punctures in massive IIA supergravity. arXiv:1704.07389 [hep-th]
  51. 51.
    Del Zotto, M., Heckman, J.J., Morrison, D.R.: 6D SCFTs and phases of 5D theories. arXiv:1703.02981 [hep-th]
  52. 52.
    Apruzzi, F., Heckman, J.J., Rudelius, T.: Green–Schwarz automorphisms and 6D SCFTs. arXiv:1707.06242 [hep-th]
  53. 53.
    Heckman, J.J., Tizzano, L.: 6D fractional quantum hall effect. arXiv:1708.02250 [hep-th]
  54. 54.
    Kim, H.-C., Razamat, S.S., Vafa, C., Zafrir, G.: E-string theory on Riemann surfaces. arXiv:1709.02496 [hep-th]
  55. 55.
    Razamat, S.S., Zafrir, G.: \(E_8\) orbits of IR dualities. arXiv:1709.06106 [hep-th]
  56. 56.
    Gaiotto, D.: \(\cal{N} = 2\) dualities. JHEP 08, 034 (2012). arXiv:0904.2715 [hep-th]ADSCrossRefGoogle Scholar
  57. 57.
    Douglas, M.R., Moore, G.W.: D-branes, quivers, and ALE instantons. arXiv:hep-th/9603167
  58. 58.
    Xie, D.: M5 brane and four dimensional \(\cal{N} = 1\) theories I. JHEP 04, 154 (2014). arXiv:1307.5877 [hep-th]ADSCrossRefGoogle Scholar
  59. 59.
    Gaiotto, D., Maldacena, J.: The gravity duals of \(N=2\) superconformal field theories. JHEP 10, 189 (2012). arXiv:0904.4466 [hep-th]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Apruzzi, F., Fazzi, M., Passias, A., Rota, A., Tomasiello, A.: Six-dimensional superconformal theories and their compactifications from type IIA supergravity. Phys. Rev. Lett. 115(6), 061601 (2015). arXiv:1502.06616 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Denef, F.: TASI lectures on complex structures. In: Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2010). String Theory and Its Applications: From meV to the Planck Scale: Boulder, Colorado, USA, June 1–25, 2010, pp. 407–512 (2011). arXiv:1104.0254 [hep-th]

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of PhysicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations