Local index theorem for orbifold Riemann surfaces

  • Leon A. Takhtajan
  • Peter ZografEmail author


We derive a local index theorem in Quillen’s form for families of Cauchy–Riemann operators on orbifold Riemann surfaces (or Riemann orbisurfaces) that are quotients of the hyperbolic plane by the action of cofinite finitely generated Fuchsian groups. Each conical point (or a conjugacy class of primitive elliptic elements in the Fuchsian group) gives rise to an extra term in the local index theorem that is proportional to the symplectic form of a new Kähler metric on the moduli space of Riemann orbisurfaces. We find a simple formula for a local Kähler potential of the elliptic metric and show that when the order of elliptic element becomes large, the elliptic metric converges to the cuspidal one corresponding to a puncture on the orbisurface (or a conjugacy class of primitive parabolic elements). We also give a simple example of a relation between the elliptic metric and special values of Selberg’s zeta function.


Fuchsian groups Determinant line bundles Quillen’s metric Local index theorems 

Mathematics Subject Classification

14H10 58J20 58J52 



We thank G. Freixas i Montplet for showing to us a preliminary version of [9] and for stimulating discussions. Our special thanks are to Lee-Peng Teo for carefully reading the manuscript and pointing out to us a number of misprints.


  1. 1.
    Ahlfors, L.V.: Some remarks on Teichmüller’s space of Riemann surfaces. Ann. Math. 74, 171–191 (1961)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Belavin, A.A., Knizhnik, V.G.: Complex geometry and the theory of quantum strings. JETP 91, 364–390 (1986). (Russian) [English. transl. in: Sov. Phys. JETP 64 (1986), 214–228]MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bers, L.: Deformations and moduli of Riemann surfaces with nodes and signatures. Math. Scand. 36, 12–16 (1975)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bismut, J.-M., Bost, J.B.: Fibrés déterminant, métriques de Quillen et dégénérescence des courbes. Acta Math. 165, 1–103 (1990)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bismut, J.-M., Gillet, H., Soule, C.: Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion. Commun. Math. Phys. 115, 49–78 (1988)Google Scholar
  6. 6.
    Can, T.: Central charge from adiabatic transport of cusp singularities in the quantum Hall effect. J. Phys. A Math. Theor. 50(17), 174004 (2017)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    D’Hoker, E., Phong, D.H.: On determinants of Laplacians on Riemann surfaces. Commun. Math. Phys. 104, 537–545 (1986)ADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Fay, J.D.: Fourier coefficients of the resolvent for a Fuchsian group. J. Reine Angew. Math. 293(294), 143–203 (1977)MathSciNetzbMATHGoogle Scholar
  9. 9.
    i Montplet, G.F., von Pippich, A.M.: Riemann–Roch isometries in the non-compact orbifold setting. JEMS (to appear)Google Scholar
  10. 10.
    Park, J., Takhtajan, L.A., Teo, L.-P.: Potentials and Chern forms for Weil–Petersson and Takhtajan–Zograf metrics on moduli spaces. Adv. Math. 305, 856–894 (2017)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Quillen, D.: Determinants of Cauchy–Riemann operators over a Riemann surface. Funk. Anal. i Prilozen. 19(1), 37–41 (1985). (Russian) [English transl. in: Funct. Anal. Appl. 19 (1985), 31–34]zbMATHGoogle Scholar
  12. 12.
    Sarnak, P.: Determinants of Laplacians. Commun. Math. Phys. 110, 113–120 (1987)ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, Princeton (1971)zbMATHGoogle Scholar
  14. 14.
    Takhtajan, L.A., Zograf, P.G.: A local index theorem for families of \(\bar{\partial }\)-operators on punctured Riemann surfaces and a new Kähler metric on their moduli space. Commun. Math. Phys. 137, 399–429 (1991)ADSGoogle Scholar
  15. 15.
    Venkov, A., Zograf, P.: On analogues of the Artin factorization formulas in the spectral theory of automorphic functions connected with induced representations of Fuchsian groups. Izv. Akad. Nauk SSSR Ser. Mat. 46(6), 1150–1158 (1982). [English. transl. in: Mathematics of the USSR-Izvestiya, 21:3 (1983), 435–443]MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wolpert, S.A.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math. 85(1), 119–145 (1986)ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Wolpert, S.A.: Cusps and the family hyperbolic metric. Duke Math. J. 138(3), 423–443 (2007)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Zograf, P.G., Takhtadzhyan, L.A.: A local index theorem for families of \(\bar{\partial }\)-operators on Riemann surfaces. Uspekhi Mat. Nauk. 42(6), 133–150 (1987). (Russian) [English. transl. in: Russian Math. Surveys 42:6 (1987), 169–190]MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of MathematicsStony Brook UniversityStony BrookUSA
  2. 2.Euler International Mathematical InstituteSaint PetersburgRussia
  3. 3.Steklov Mathematical InstituteSaint PetersburgRussia
  4. 4.Chebyshev LaboratorySaint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations